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A normal form system (NFS) for representing Boolean functions is thought of as a set of 
stratified terms over a fixed set of connectives. For a fixed NFS A, the complexity of a 
Boolean function f with respect to A is the minimum of the sizes of terms in A that 
represent f . This induces a preordering of NFSs: an NFS A is polynomially as efficient as 
an NFS B if there is a polynomial P with nonnegative integer coefficients such that the 
complexity of any Boolean function f with respect to A is at most the value of P in the 
complexity of f with respect to B. In this paper we study monotonic NFSs, i.e., NFSs whose 
connectives are increasing or decreasing in each argument. We describe the monotonic 
NFSs that are optimal, i.e., that are minimal with respect to the latter preorder. We show 
that these minimal monotonic NFSs are all equivalent. Moreover, we address some natural 
questions, e.g.: does optimality depend on the arity of connectives? Does it depend on 
the number of connectives used? We show that optimal monotonic NFSs are exactly those 
that use a single connective or one connective and the negation. Finally, we show that 
optimality does not depend on the arity of the connectives.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Motivation. In this paper, we investigate efficient representations of Boolean functions by terms. The terms we consider are 
standard terms or Boolean expressions that can be found in term rewriting systems or standard programming languages [1]. 
The notion of efficiency that we consider is related to the number of function symbols, called connectives, in a term 
representing a given Boolean function. In this paper we study normal form systems at a structural level. In particular, we 
address the following questions:

1. Does the efficiency depend on the number of such connectives? One might think that adding extra connectives increases the 
efficiency but, as we will see, this is not the case.

2. Does the efficiency depend on the arity of the connectives? One might think that connectives of greater arity improve effi-
ciency as more information is processed by each connective but, again, this is not the case.

* Corresponding author.
E-mail addresses: miguel.couceiro@loria.fr (M. Couceiro), Erkko.Lehtonen@tu-dresden.de (E. Lehtonen), pierre.mercuriali@loria.fr (P. Mercuriali), 

romain.pechoux@loria.fr (R. Péchoux).
1 Current address: Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 

Caparica, Portugal.
https://doi.org/10.1016/j.tcs.2020.01.009
0304-3975/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2020.01.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:miguel.couceiro@loria.fr
mailto:Erkko.Lehtonen@tu-dresden.de
mailto:pierre.mercuriali@loria.fr
mailto:romain.pechoux@loria.fr
https://doi.org/10.1016/j.tcs.2020.01.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2020.01.009&domain=pdf


342 M. Couceiro et al. / Theoretical Computer Science 813 (2020) 341–361
We consider a normal form system (NFS) to be a family of terms with a fixed structure that is complete with respect to 
Boolean functions, i.e., every Boolean function has a representation in the NFS. A similar framework was considered in [5]
based on the notion of clone composition. In fact, not every composition of two clones is a clone. The composition of two 
clones is contained in their join, and the first main result of [5] is a clone composition table ([5, Table 1, Theorem 2]), 
which indicates for each pair of clones of Boolean functions whether their composition is a clone or not. With the help of 
this table, factorizations of the clone � of all Boolean functions into minimal clones were considered further, and so-called 
descending irredundant factorizations of � were seen to correspond to certain well-known NFSs of Boolean functions, 
namely the median, conjunctive, disjunctive, polynomial, and dual polynomial NFSs. Such NFSs were compared in terms of 
complexity, and the median normal form system proved more efficient than the others.

In the current paper, we relax the conditions for an NFS. In contrast to the framework of [5], which only uses connectives 
of minimal arity that are generators of minimal clones, we now allow arbitrary connectives (of any arity, not necessarily 
generating a minimal clone). As in [5], for a fixed NFS A, the complexity CA( f ) of a Boolean function f with respect to A is 
the minimum of the sizes of terms in A that represent f . In this way, we can compare NFSs with respect to this complexity 
measure: an NFS A is polynomially as efficient as an NFS B if there is a polynomial P with nonnegative integer coefficients 
such that for any Boolean function f , CA( f ) ≤ P (CB( f )).

In this paper, we focus on monotonic NFSs, i.e., NFSs whose connectives are increasing or decreasing in each argument.

Main contributions. The main contributions of this paper are the following:

(i) Optimal monotonic NFSs (a monotonic NFS is optimal if it is minimal with respect to the preorder just defined) are 
exactly those monotonic NFSs that use a single connective or one connective and the negation. Moreover, such NFSs are 
all equivalent, which motivates the notion of optimality.

(ii) The arity of connectives does not impact the efficiency of monotonic NFSs.

Related works. Terms can represent formulas, i.e., circuits where all internal gates have fan-out 1. Studying terms rather 
than circuits distinguishes syntax and semantics in a clearer manner, and we can profit from the inherent structure of 
interpretations of terms to derive useful results using clone theory. It was proved in [3,19] that given a Boolean formula C
involving only binary connectives, there is an equivalent formula C ′ using connectives in {∧, ∨, ¬} such that

leafsize(C ′) ≤ leafsize(C)α

where leafsize(C) is the number of leaves in the tree representation of C and for α such that 1+2α

3α ≤ 1
2 . Our generalization 

of this result is threefold: first, connectives occurring in terms are applied in a stratified manner, i.e., with respect to some 
order in the depth of the terms; second, we consider connectives of arbitrary arity and not only binary; third, we consider 
minimal representations of Boolean functions. A classification of the complexity of satisfiability problems with respect to 
clause connectives was established in [17]; the paper [2] provides an alternative proof that relies on the Galois connection 
between functions and relations and Post’s classification. Here we do not focus on computational complexity but rather on 
the representational complexity.

Outline. In Section 2 we recall basic notions on Boolean functions, clones, terms, and term operations, and present some 
preliminary results. In Section 3 we introduce stratified sets of terms and monotonic NFSs and state some of their prop-
erties. Section 4 lays down a framework for comparing NFSs based on the representational complexity of functions. For 
that purpose, we introduce reductions between NFSs and show that they translate into comparabilities between NFSs. In 
particular, we establish the equivalence between several monotonic NFSs. Section 5 is devoted to characterizing the optimal 
monotonic NFSs. We show that optimal monotonic NFSs are exactly those that use a single connective or one connective 
and the negation. To this effect, we first show that the median NFS is optimal among monotonic NFS (Theorem 44). The 
remainder of the proof is obtained by a case analysis showing – making use of reductions between NFSs – that every 
monotonic NFS based on a single connective and the negation is at least as efficient as the median NFS. In particular, it 
follows that the representational complexity does not depend on the arity of the connective. This still holds for NFSs that 
are based on at least two non-unary connectives. This is shown in Section 6, where we furthermore show that any such 
NFS is equivalent to the conjunctive, disjunctive, polynomial, or dual polynomial NFS.

Still in Section 6, we discuss the case of non-monotonic NFSs and conjecture that they are strictly more efficient than the 
monotonic ones. In Section 7, we put in perspective the results of the paper and mention some topics of further research.

2. Preliminaries

In this section we recall basic notions of clone theory and normal form systems in the context of Boolean functions. For 
further background on clone theory, see [13].
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Table 1
Well-known Boolean functions.

a ¬(a)

0 1
1 0

a b a ∨b a ∧b a ⊕b a ↑b a ↓b

0 0 0 0 0 1 1
0 1 1 0 1 1 0
1 0 1 0 1 1 0
1 1 1 1 0 0 0

a b c μ(a,b, c)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

2.1. Boolean functions

Throughout the paper we will denote by B the 2-element set {0, 1}. We will often designate tuples with boldface letters 
and their entries by corresponding italic letters with subscripts, e.g., a = (a1, . . . , an). The Hamming distance between two 
tuples a and b, denoted d(a, b), is the number of positions in which they differ. The Hamming weight of a tuple a, denoted 
w(a), is defined as the number of nonzero entries of a, that is, w(a) := d(a, (0, . . . , 0)).

The set B is endowed with the natural ordering 0 ≤ 1. The set Bn can thus be endowed with the component-wise 
ordering of tuples, i.e., (a1, . . . , an) ≤ (b1, . . . , bn) if and only if for all i with 1 ≤ i ≤ n we have ai ≤ bi . A tuple b is said to 
cover another tuple a, if a < b and there is no tuple c such that a < c < b.

A Boolean function is a map f : Bn →B, for some integer n ≥ 0 called the arity of f . The arity of f is denoted by ar( f ). 
For a fixed arity n, the n different projection maps are the functions defined by e(n)

i : (a1, . . . , an) �→ ai, 1 ≤ i ≤ n. The nullary 
operations are constants corresponding to the elements of B. With no danger of ambiguity, we will denote any constant 
function of any arity taking value 0 (resp. 1) by a boldface 0 (resp. 1).

Other well-known examples of Boolean functions are the unary function ¬ (negation, not), the binary functions ∨ (dis-
junction, or), ∧ (conjunction, and), ⊕ (addition modulo 2, exclusive or, xor), ↑ (Sheffer stroke, negated conjunction, nand), 
↓ (Peirce’s arrow, negated disjunction, nor) and the ternary function μ (majority), which are defined by the operation tables 
shown in Table 1.

We will use both prefix and infix notation, e.g., ∨(a1, a2) = a1 ∨ a2. For a binary function f , let fn be defined inductively 
by f2(a1, a2) = f (a1, a2) and fn+1(a1, . . . , an+1) = f (a1, fn(a2, . . . , an+1)), e.g., ∧3(a1, a2, a3) = ∧(a1, ∧(a2, a3)).

A tuple a is called a true point (resp. false point) of a function f if f (a) = 1 (resp. f (a) = 0). We say that a is a minimal 
true point of f if a is a true point of f and there is no true point b of f such that b < a. Similarly, we say that a is a maximal 
false point of f if a is a false point of f and there is no false point b of f such that a < b.

For a ∈ B, a function f : Bn → B is a-preserving if f (a, . . . , a) = a. A function is constant-preserving if it is both 0- and 
1-preserving. For a function f : Bn →B, the dual of f is defined as

f d(a1, . . . ,an) := ¬( f (¬(a1), . . . ,¬(an))).

A function f : Bn →B is self-dual if f = f d. A function f : Bn →B is symmetric if for any permutation π of {1, . . . , n}, we 
have f (a1, . . . , an) = f (aπ(1), . . . , aπ(n)), for all a1, . . . , an ∈ B. A function f : Bn → B is monotone if for all a, b ∈ Bn , a ≤ b
implies f (a) ≤ f (b).

A function f : Bn →B is increasing (decreasing, resp.) in the i-th argument, if for all a1, . . . , an, bi ∈B, ai ≤ bi implies

f (a1, . . . ,ai−1,ai,ai+1, . . . ,an) ≤ f (a1, . . . ,ai−1,bi,ai+1, . . . ,an)

( f (a1, . . . ,ai−1,ai,ai+1, . . . ,an) ≥ f (a1, . . . ,ai−1,bi,ai+1, . . . ,an), resp.).

A function is pseudo-monotone if it is increasing or decreasing in each argument.

Fact 1. A function f : Bn → B is pseudo-monotone if and only if there exist a monotone function g : Bn → B and a subset
S ⊆ {1, . . . , n} such that for all a1, . . . , an ∈B,

f (a1, . . . ,an) = g(l1, . . . , ln),

where li = ai if i ∈ S and li = ¬(ai) if i /∈ S.

Given f :Bn →B, the i-th argument of f is essential in f , if there exists (a1, . . . , an) ∈Bn such that

f (a1, . . . ,ai−1,0,ai+1, . . . ,an) �= f (a1, . . . ,ai−1,1,ai+1, . . . ,an).

Two functions f and g are equivalent, denoted f ∼= g , if each one can be obtained from the other by permutation of 
arguments and by addition or deletion of inessential arguments. It is not difficult to see that the number of essential 
arguments is preserved by duality and equivalence of functions. For further background, see e.g., [8,9,16,21].
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Table 2
Properties of well-known Boolean functions.

0 1 ¬ ∨ ∧ ⊕ ↑ ↓ μ

0-preserving yes no no yes yes yes no no yes
1-preserving no yes no yes yes no no no yes
dual 1 0 ¬ ∧ ∨ ¬(⊕) ↓ ↑ μ
self-dual no no yes no no no no no yes
symmetric yes yes yes yes yes yes yes yes yes
monotone yes yes no yes yes no no no yes
increasing in the i-th argument yes yes no yes yes no no no yes
decreasing in the i-th argument yes yes yes no no no yes yes no
pseudo-monotone yes yes yes yes yes no yes yes yes

Any set of Boolean functions of arbitrary arities is called a class. If f is n-ary and g1, . . . , gn are all m-ary, then their 
composition f (g1, . . . , gn) is the m-ary function given by

f (g1, . . . , gn)(a1, . . . ,am) = f (g1(a1, . . . ,am), . . . , gn(a1, . . . ,am)),

for all (a1, . . . , am) ∈Bm . This notion extends naturally to classes of functions I and J . The composition of I with J , denoted 
I ◦J , is defined by

I ◦J := { f (g1, . . . , gn) | n,m ≥ 1, f n-ary in I, g1, . . . , gn m-ary in J }.

Example 2. As an illustration of the notions introduced in this subsection, for each one of the Boolean functions 0, 1, ¬, 
∨, ∧, ⊕, ↑, ↓, and μ, Table 2 shows its dual and indicates whether it is self-dual, symmetric, monotone, increasing or 
decreasing in the i-th argument (the indicated property holds for every i), or pseudo-monotone. The projection e(n)

i is 
both 0- and 1-preserving and self-dual; it is symmetric if and only if n = 1; it is monotone, increasing in every argument, 
decreasing in every argument except the i-th one, and pseudo-monotone.

Every argument is essential in ¬, ∨, ∧, ⊕, ↑, ↓ and μ. No argument is essential in 0 and 1. In e(n)
i , the only essential 

argument is the i-th one.
All projections are equivalent to each other. All constant functions taking the same value are equivalent to each other. 

The functions from Table 2 are pairwise non-equivalent. �

2.2. Clones of Boolean functions

A clone is a class C of Boolean functions that contains all projection maps and that satisfies C ◦ C ⊆ C (i.e., it is closed 
under composition). Ordered by inclusion, the clones of Boolean functions constitute an algebraic lattice where the largest 
clone is the set of all Boolean functions and the smallest clone is the set of all projections, and where the meet of two 
clones is their intersection and the join of two clones is the smallest clone that contains their union. This lattice, called 
Post’s lattice, was completely described in [15] and its Hasse diagram is presented in Fig. 1. We will use the nomenclature 
of [5] and [11].

• The clone of all Boolean functions is denoted by �.
• For a ∈ B, the clone of a-preserving functions is denoted by Ta , and Tc := T0 ∩ T1 is the clone of constant-preserving 

functions.

Fig. 1. Post’s lattice with precomplete clones.
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• The clone of all monotone functions is denoted by M , and Mx := M ∩ Tx , for x ∈ {0, 1, c}.
• The clone of all self-dual functions is denoted by S , and Sc := S ∩ Tc, S M := S ∩ M .
• The clone of all linear functions is denoted by L, i.e.,

L := { f ∈ � | f ∼= ⊕n or f ∼= ¬(⊕n) for some n ≥ 2} ∪ {e(n)
i ,¬(e(n)

i ) | 1 ≤ i ≤ n} ∪ {0,1},
Lx := L ∩ Tx , for x ∈ {0, 1, c}, and L S := L ∩ S .

A set A ⊆ {0, 1}n is said to be a-separating, a ∈B, if there is some i, 1 ≤ i ≤ n, such that for every (a1, . . . , an) ∈ A we have 
ai = a. A function f is said to be a-separating if f −1(a) is a-separating. The function f is said to be a-separating of rank k ≥ 2
if every subset A ⊆ f −1(a) of size at most k is a-separating.

For example, ∧ is 1-separating but not 0-separating and, dually, ∨ is 0-separating but not 1-separating. For any n ≥ 3, 
the function f : Bn →B defined by the rule f (x) = 1 ⇐⇒ w(x) ≥ n − 1 is 1-separating of rank n − 1 but not 1-separating 
of rank n.

• For m ≥ 2, the clones of all 1- and 0-separating functions of rank m are denoted by Um and Wm , respectively, and 
the clones of all 1- and 0-separating functions are denoted by U∞ and W∞ , respectively. For m = 2, . . . , ∞, TcUm :=
Tc ∩ Um , TcWm := Tc ∩ Wm , MUm := M ∩ Um , MWm := M ∩ Wm , McUm := Mc ∩ Um , McWm := Mc ∩ Wm .

• The clone of all conjunctions and constants is denoted by �, i.e.,

� := { f ∈ � | f ∼= ∧n for some n ≥ 2} ∪ {e(n)
i | 1 ≤ i ≤ n} ∪ {0,1},

and �x := � ∩ Tx , for x ∈ {0, 1, c}.
• The clone of all disjunctions and constants is denoted by V , i.e.,

V := { f ∈ � | f ∼= ∨n for some n ≥ 2} ∪ {e(n)
i | 1 ≤ i ≤ n} ∪ {0,1},

and V x := V ∩ Tx , for x ∈ {0, 1, c}.
• The clone of all projections, negated projections, and constants is denoted by �(1), the clone of all projections and 

negated projections is denoted by I∗ , the clone of all projections and constants is denoted by I , and Ix := I ∩ Tx , for 
x ∈ {0, 1, c}.

Let F be a set of Boolean functions. The clone generated by F , denoted C(F), is the smallest clone that contains F , i.e., 
C(F) = ⋂

C a clone, F⊆C C . In the particular case where F = { f }, we write simply C( f ) and say that f is a generator of C( f ).

Example 3. The clone S M is generated by the (2k + 1)-ary majority function μ2n+1 : B2k+1 →B (k ≥ 1), defined by the rule 
μ2n+1(x) = 1 if and only if w(x) ≥ k + 1. Note that μ3 = μ (see Table 1). The clones McU∞ and McW∞ are generated by 
the ternary functions u and w, respectively, which are defined by

u(a1,a2,a3) := (a1∨a2)∧a3,

w(a1,a2,a3) := (a1∧a2)∨a3,

for all a1, a2, a3 ∈B. �

Definition 4 (Sheffer and quasi-Sheffer functions). A function f is Sheffer (resp. quasi-Sheffer) if � = C( f ) (resp. � = C( f ) ◦
�(1)). A clone is precomplete if it contains quasi-Sheffer functions.

Example 5. Clearly every Sheffer function is also quasi-Sheffer but the converse is not true. For example, the function ↓ is 
Sheffer and thus quasi-Sheffer, whereas the ternary majority μ is quasi-Sheffer but not Sheffer. Indeed C(μ) = S M �= �.

Proposition 6. A function f is quasi-Sheffer if and only if f /∈ V ∪ L ∪ �.

Proof. The result can be read directly from the clone composition table of [5]. Since the function class composition is 
monotone with respect to subset inclusion, and since S M ◦�(1) = McU∞ ◦�(1) = McW∞ ◦�(1) = �, if a function f is not 
quasi-Sheffer, then C( f ) ⊂ V ∪ L ∪ �. Conversely, if f ∈ V ∪ � ∪ L, then C( f ) ◦ �(1) �= �. �
Example 7. The clone S M of self-dual monotone functions is precomplete as it contains the ternary majority function μ
that is quasi-Sheffer. The clone � of conjunctions is not precomplete. �

The separation between precomplete and not precomplete clones is illustrated in Fig. 1.
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2.3. Terms, algebras, term operations

We briefly recall from universal algebra the notions of terms, algebras, and term operations. Let F be a set of operation 
symbols or connectives, and let τ : F → N be a map, called an (algebraic similarity) type, that assigns to each operation 
symbol its arity. An algebra is a pair A = (A, F A), where A is a nonempty set, called the carrier or universe of A, and 
F A = ( f A : f ∈ F ) is an indexed family of operations on A, each f A of arity τ ( f ).

Let τ : F →N be an algebraic similarity type, and let X be a set disjoint from F . The elements of X are called variables.
We define terms of type τ over X inductively as follows:

(i) Each variable x ∈ X is a term.
(ii) If c ∈ F and τ (c) = 0, then c is a term.

(iii) If f ∈ F , τ ( f ) > 0, and t1, . . . , tτ ( f ) are terms, then f t1 . . . tτ ( f ) is a term.

We denote by Tτ (X) the set of all terms of type τ over X .
Unless otherwise mentioned, we consider terms over the so-called standard set of variables, that is, X = {xi : i ∈N}. We 

say that a term t ∈ Tτ (X) is n-ary if the variables occurring in t are among x1, . . . , xn .
When writing down a term, we may add some commas and parentheses for the sake of clarity. Thus we may write 

f (t1, . . . , tτ ( f )) for f t1 . . . tτ ( f ) . These punctuation symbols are formally not part of a term. We may also use the usual infix 
notation for binary function symbols. Thus we may write t1 α t2 for αt1t2 if α is a binary operation symbol.

Let A be an algebra of type τ . Each n-ary term t ∈ Tτ (X) induces an n-ary operation tA on A as follows:

(i) If t = xi ∈ X , then tA is the i-th n-ary projection map e(n)
i .

(ii) If t = c ∈ F with τ (c) = 0, then tA is the n-ary constant operation taking value c everywhere.
(iii) If t = f t1 . . . tτ ( f ) , then tA = f A(tA

1 , . . . , tA
τ ( f )).

The operation tA is called the term operation induced by t on A. We also say that tA is the interpretation of t in A, or that 
the term t represents the function tA .

Note that if a term is n-ary, then it is also n′-ary for all n′ ≥ n. Hence the arity is not an inherent part of a term, and it 
should be specified whenever term operations are considered. It will, however, in most cases be clear from the context.

A term t is linear if no variable occurs more than once in t . Any subword of a term t that is itself a term is called a 
subterm of t . Given a term t with variables x1, . . . , xn and terms t1, . . . , tn , the term t{t1/x1, . . . , tn/xn} is obtained from t by 
replacing every instance of xi by ti in t .

In this paper, we consider a particular algebraic similarity type τ and a particular algebra of type τ . Namely, we take as 
the set of operation symbols the set of all Boolean functions, that is, F = �, and we define τ : � →N as τ ( f ) := ar( f ) for 
all f ∈ �. We let B = (B, �B) be the algebra of type τ , where for each f ∈ �, f B = f . In this way, we can build terms using 
Boolean functions as operation symbols, and they are interpreted in B in an obvious, natural way as Boolean functions.

We will use letters s, t, s′, t′, . . . to designate terms in Tτ (X). Variables and terms of the form ¬(xi) for some variable xi
are called literals. Given a term t and an integer k > 0, let tk be a shorthand notation for the string defined inductively by 
t1 := t and tn+1 := ttn .

We say that two n-ary terms s, t ∈ Tτ (X) are equivalent, and we write s ≡ t , if sB = tB . For a term t ∈ Tτ (X), we often 
denote the term operation tB by [t]. For a set S ⊆ Tτ (X), we define the interpretation of S as [S] := {[t] | t ∈ S}.

Example 8. Consider the binary terms μ(x1, x2, 1) and x1∨x2 in Tτ (X). It is rather easy to verify that

[μ(x1, x2,1)] = μ(e(2)
1 , e(2)

2 ,1) = ∨(e(2)
1 , e(2)

2 ) = [x1∨x2].
In other words, we have μ(x1, x2, 1) ≡ x1∨x2, and both terms represent the function ∨. �

3. Normal form systems

In this section, we adapt the notion of normal form system from [5] and make explicit the structure of the terms they 
induce.

3.1. Normal form systems

Definition 9. Given a sequence α1, . . . , αn of distinct connectives, we say that a term t ∈ Tτ (X) is stratified with respect to 
α1, . . . , αn if

(i) the operation symbols occurring in t are among α1, . . . , αn, 0, 1; and
(ii) every subterm in t of the form α j(t1, . . . , tar(α j)), j ∈ {1, . . . , n}, has no subterm of the form αi(t′

1, . . . , t
′
ar(αi)

) with 
i < j.



M. Couceiro et al. / Theoretical Computer Science 813 (2020) 341–361 347
We denote by T (α1 · · ·αn) the set of all terms stratified with respect to α1, . . . , αn .

Example 10. Let α be a ternary connective and β a binary connective. The term β(α(x1, 0, x3), x4) belongs to T (βα), 
T (βα¬) and T (¬βα) but it does not belong to T (α) and T (αβ). The term β(¬(α(x1, x2, x3)), 1) belongs to T (β¬α) but not 
to T (βα¬). �

Remark 11. In a term t of T (α1α2 · · ·αn¬), where none of the αi ’s is ¬, the negation ¬ can only be applied to (iterated 
negations of) variables or constants. For example, ¬(¬(x)) and ¬(0) can be subterms of t but ¬(αi(t1, . . . , tar(αi))) cannot.

Definition 12. For a sequence α1, . . . , αn of distinct connectives, we say that the set T (α1 · · ·αn) of stratified terms is redun-
dant if there exists an i ∈ {1, . . . , n} such that [T (α1 · · ·αi−1αi+1 · · ·αn)] = [T (α1 · · ·αn)]. Otherwise it is called irredundant.

Example 13. For example, the set T (↑ ¬) is redundant because [T (↑)] = � since ↑(x, x) ≡ ¬x. However T (μ¬) is irredun-
dant as [T (μ)] = S M �= � and [T (¬)] = I∗ �= �. �

In [5], it was observed that factorizations of the clone � yield NFSs. For example, the factorization

� = C(∨) ◦ C(∧) ◦ C(¬)

expresses the fact that every Boolean function has a representation in disjunctive normal form (DNF).
We adapt the notion of NFS slightly to make explicit the connectives appearing in the NFS.

Definition 14. A normal form system (NFS) is an irredundant set T (α1 · · ·αn) of stratified terms such that [T (α1 · · ·αn)] = �. 
If all αi are pseudo-monotone functions then T (α1 · · ·αn) is called monotonic.

Definition 15. The NFSs defined below are called basic NFSs.

• M := T (μ¬);
• W := T (w¬);
• D := T (∨∧¬);
• S := T (↑);
• P := T (⊕∧);

• M2n+1 := T (μ2n+1¬);
• U := T (u¬);
• C := T (∧∨¬);
• Sd := T (↓);
• Pd := T (⊕∨).

The NFSs M, C, D, P and Pd respectively, correspond to the usual median, conjunctive, disjunctive, polynomial and dual 
polynomial normal forms. Notice that apart from P and Pd all the basic NFSs are monotonic.

3.2. Properties of normal form systems

The interpretation of any term in T (α1 · · ·αn) can be expressed as an ordered composition of functions in C(α1), . . . ,
C(αn) and the clone I of all projections and constants, respectively.

Fact 16. [T (α1 · · ·αn)] = C(α1) ◦ · · · ◦ C(αn) ◦ I .

For example, [M] = [T (μ¬)] = � = C(μ) ◦ C(¬) ◦ I .
The clone composition table in [5] reveals the following.

Fact 17. For every clone C , the composition C ◦ I is a clone, namely the clone generated by C∪ I . Moreover, C ◦ I = I ◦C ◦ I . Consequently, 
for any clones C1, C2, . . . , Cn, we have C1 ◦ C2 ◦ . . .Cn ◦ I = (C1 ◦ I) ◦ (C2 ◦ I) ◦ · · · ◦ (Cn ◦ I).

Lemma 18. Let α1, . . . , an and β1, . . . , βn be connectives such that [T (αi)] = [T (βi)], i.e., C(αi) ◦ I = C(βi) ◦ I , for all i ∈ {1, . . . , n}. 
Then [T (α1 · · ·αn)] = [T (β1 · · ·βn)].

Proof. By Facts 16 and 17,

[T (α1 · · ·αn)] = C(α1) ◦ · · · ◦ C(αn) ◦ I = (C(α1) ◦ I) ◦ · · · ◦ (C(αn) ◦ I)

= (C(β1) ◦ I) ◦ · · · ◦ (C(βn) ◦ I) = C(β1) ◦ · · · ◦ C(βn) ◦ I

= [T (β1 · · ·βn)]. �
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If at least two connectives and the negation are used to build an NFS, then irredundancy forces those connectives to 
belong to the clone � of conjunctions, to the clone V of disjunctions or to the clone L of linear functions.

Lemma 19. If T (α1 · · ·αn¬), with n > 1, is an NFS, then each αi is in V ∪ L ∪ �.

Proof. Suppose that there exists an i such that αi is not in V ∪ L ∪�. By Proposition 6, αi is quasi-Sheffer, i.e., C(αi) ◦�(1) =
�. Hence [T (αi¬)] = C(αi) ◦ C(¬) ◦ I = C(αi) ◦ �(1) = �, so T (α1 · · ·αn¬) is redundant and not an NFS. �

Moreover, by irredundancy again, there cannot be more than 2 such connectives.

Proposition 20. If α1, . . . , αn ∈ � \ �(1) and T (α1 · · ·αn¬) is an NFS, then n ≤ 2.

Proof. Suppose, to the contrary, that n ≥ 3. By Lemma 19, α1, . . . , αn are all in V ∪ L ∪ �. For i ∈ {1, . . . , n}, let

βi :=

⎧⎪⎨
⎪⎩

∨ if αi ∈ V \ �(1),

∧ if αi ∈ � \ �(1),

⊕ if αi ∈ L \ �(1).

Then C(αi) ◦ I = C(βi) ◦ I for all i ∈ {1, . . . , n}, so it follows from Lemma 18 that [T (αi1 · · ·αi�¬)] = [T (βi1 · · ·βi�¬)] for any 
i1, . . . , i� ∈ {1, . . . , n}.

If βi = βi+1 for some i ∈ {1, . . . , n − 1}, then

[T (α1 · · ·αn¬)] = [T (β1 · · ·βn¬)] = [T (β1 · · ·βiβi+2 · · ·βn¬)] = [T (α1 · · ·αiαi+2 · · ·αn¬)];
therefore T (α1 · · ·αn¬) is redundant and hence not an NFS, a contradiction.

Assume now that βi �= βi+1 for all i ∈ {1, . . . , n − 1}. Then there must exist indices i, j with i < j such that (βi, β j) ∈
{(∨, ∧), (∧, ∨), (⊕, ∧), (⊕, ∨)}. Since T (∨∧¬), T (∧∨¬), T (⊕∧) and T (⊕∨) are basic NFSs (see Definition 15), it follows 
that T (β1 · · ·βn¬) and consequently also T (α1 · · ·αn¬) is redundant and hence not an NFS, again a contradiction. �

In [20], Wernick shows that there is no non-redundant complete sets of more than three binary logical connectives. 
Proposition 20 extends this result to logical connectives of arbitrary arity in the case of stratified terms with negations at 
the bottom.

Corollary 21. If T (α1 · · ·αn¬) is an NFS, then either n = 2 and each αi is in V ∪ �, or n = 1 and α1 is quasi-Sheffer.

This corollary motivates the following definition.

Definition 22. An NFS is Sheffer (quasi-Sheffer) if it is of the form T (α) (T (α¬), respectively).

4. Efficiency of normal form systems

In [5], a preordering of NFSs was introduced that relates two NFSs A and B if A is polynomially at least as efficient as B. 
In this section we extend this preorder to compare arbitrary sets of terms, not necessarily NFSs. We propose reductions to 
convert terms from one NFS to another, that we use to compare NFSs and extend the results of [5] to all basic NFSs.

4.1. Efficiency

Given a term t ∈ Tτ (X) and b ∈ � ∪ X , denote by |t|b the number of occurrences of the symbol b in t . The size of a 
term t , denoted by |t|, is the number of occurrences of all connectives, distinct from 0, 1 and ¬, in t: |t| = ∑

α∈�\{0,1,¬} |t|α . 
E.g., |x∧(¬y∨1)| = |x∧(¬y∨1)|∧ + |x∧(¬y∨1)|∨ = 1 + 1 = 2.

Remark 23. Our definition of the size of a term is perhaps a bit unusual, as we choose not to count constants, negations, 
nor variables. It is easy to see that the number of variables or constants occurring in a term is linear in the number 
of (non-nullary) connectives. Moreover, in the shortest representation of a given function in a given NFS, the number of 
negations is bounded above by the number of variables. Polynomial differences in the size of terms are insignificant in the 
analysis of the efficiency of normal form systems that will follow. Consequently, whether constants, negations, and variables 
are counted or not has no bearing on our results, and we simply omit them in order to make calculations a little easier.
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Definition 24 (Complexity). Given a set of terms T , the complexity of a Boolean function f ∈ [T ] with respect to T , denoted 
CT ( f ), is defined by:

CT ( f ) = min{|t| : t ∈ T , [t] = f }.

Example 25. We have that CM(μ) = 1 because μ(x, y, z) is the smallest term in T (μ¬) that represents μ. However, 
CT (∨∧¬)(μ) = 5 because the term (x∧y)∨(y∧z)∨(z∧x) is the smallest term in T (∨ ∧ ¬) that represents μ. �

Notice that for a set of terms T , the complexity CT is a partial function on �. However the complexity CA of an NFS A
is a total function as [A] = �. We generalize the notion of efficiency of [5] to compare sets of terms that are not necessarily 
NFSs.

Definition 26 (Efficiency). Let T , S be two sets of terms such that [S] ⊆ [T ].

• T is polynomially at least as efficient as S , denoted T � S , if there is a polynomial P ∈N[X] such that ∀ f ∈ [S], CT ( f ) ≤
P (C S ( f )).

• T and S are incomparable, denoted T ‖ S , if T � S and S � T .
• T is polynomially more efficient than S , denoted T ≺ S , if T � S and S � T .
• T and S are equivalent, denoted T ∼ S , if T � S and S � T .

For convenience, we will write S � T if T � S .

Hence � is a preorder that is not total and ∼ is an equivalence relation on the power set of the set of all terms.

Theorem 27 ([5, Theorem 5]). For every pair of NFSs A, B ∈ {C, D, P, Pd}, if A �= B, then A ‖ B. Moreover, M ≺ C, D, P, Pd .

We are interested in minimal monotonic NFSs, i.e., monotonic NFSs that are minimal for the preorder �.
As we will see, such minimal NFSs exist and they are all equivalent. This motivates the following notion of optimality.

Definition 28. A monotonic NFS A is optimal if A is minimal and there is no monotonic NFS B that is incomparable to A, or, 
equivalently, if for every monotonic NFS B, we have A � B.

4.2. Linear and quasi-linear reductions

As will become clear from Theorems 44 and 46, the optimal monotonic NFSs are of the form T (α) or T (α¬). For this 
reason, in the remainder of this section and in Section 5, we will focus on NFSs of these forms.

In this subsection, we will define relations between sets of terms based on the way we can convert terms from one set 
to the other. We shall make use of these relations to establish the equivalence between optimal monotonic NFSs. The most 
fortunate situation is that the connectives of one NFS can be represented as linear terms in the other; then a straightforward 
substitution of such terms for connectives provides an efficient conversion. As we will see, efficient conversions are possible 
also under more relaxed conditions.

To illustrate, consider the equivalence u(x, y, z) ≡ μ(μ(x, 1, y), 0, z) that allows us to convert terms in U into terms in 
M. Using this equality, terms are converted with at most an affine increase of size: each connective u is replaced by exactly 
two connectives μ and variables are not repeated. Indeed, if tmin

U is a minimal representation in U of a Boolean function 
f ∈ �, then CU( f ) = |tmin

U |. If tM is the result of converting tmin
U using the above equivalence, then CM( f ) ≤ |tM|, and as 

|tM| = 2|tmin
U |, we obtain CM( f ) ≤ 2CU( f ).

Definition 29 (Reductions). Consider two sets of terms A = T (α¬) (or T (α)) and B = T (β¬) (or T (β)) such that [A] ⊆ [B]. 
We say that

• there exists a linear reduction from A to B , or that A is linearly reducible to B , denoted A � B , if there exists a linear 
term t ∈ T (β) such that α(x1, . . . , xar(α)) ≡ t;

• there exists a universal quasi-linear reduction from A to B , or that A is universally reducible to B , denoted A �∀ B , if for 
all j ∈ {1, . . . , ar(α)}, there exists a t j ∈ T (β) such that α(x1, . . . , xar(α)) ≡ t j and |t j |x j = 1;

• there exists an existential quasi-linear reduction from A to B , or that A is existentially reducible to B , denoted A �∃ B , if 
there exists a t ∈ T (β) such that α(x1, . . . , xar(α)) ≡ t and |t|x j = 1 for some j ∈ {1, . . . , ar(α)}.

Remark 30. Linear reducibility is somewhat related to the notion of read-once (Boolean) functions: a function f is called 
read-once if it can be represented by a linear term (see, e.g., [6,10]).
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Proposition 31. For any sets A and B of terms, A � B implies A �∀ B, and A �∀ B implies A �∃ B; in other words, � ⊂ �∀ ⊂ �∃ .

Proof. The fact that the inclusions � ⊆ �∀ ⊆ �∃ hold is clear from the definition. It remains to show that these inclusions 
are indeed all strict.

To see that � is strictly included in �∀ , consider the NFSs M and U. We can infer M �∃ U from μ(x, y, z) ≡
u(u(x, 0, y), u(x, y, z), 1), and thus M �∀ U since μ is symmetric. However, M � U does not hold, as the following argu-
ment shows.

Suppose, to the contrary, that there is a ternary linear term t ∈ U equivalent to μ(x1, x2, x3), and assume that t has the 
smallest possible size among such terms. By minimality, no subterm of t of the form u(t1, t2, t3) satisfies t1 = 1 or t2 = 1 or 
t3 = 0, because for any terms s, s′ , we have u(1, s, s′) ≡ u(s, 1, s′) ≡ s′ and u(s, s′, 0) ≡ 0; hence we could obtain a smaller 
term equivalent to t by replacing the subterm u(t1, t2, t3) by t3 or 0 accordingly. A similar argument shows that no subterm 
of t of the form u(t1, t2, t3) satisfies t1 = t2 = 0, or t1 = 0 and t3 = 1, or t2 = 0 and t3 = 1, because for any term s, we have 
u(0, 0, s) ≡ 0, u(0, s, 1) ≡ u(s, 0, 1) ≡ s. Consequently, in every subterm of the form u(t1, t2, t3), at most one of the terms t1, 
t2, t3 is a constant.

There are no two subterms u(t1, t2, t3), u(s1, s2, s3) of t such that two of the terms t1, t2, t3 are variables and two 
of the terms s1, s2, s3 are variables, because then some variable appears at least twice in t (recall that t is ternary), 
contradicting the linearity of t . Consequently, there is no subterm of the form u(t1, t2, t3) with ti1 = u(ti1,1, ti1,2, ti1,3), 
ti2 = u(ti2,1, ti2,2, ti2,3), i1 �= i2. Otherwise ti1 and ti2 would have subterms of the form u(s1, s2, s3) where the si are constants 
or variables, and, as we have seen above, these subterms must have at least two variables each, which contradicts again the 
linearity of t .

It is clear that no term in U with at most one occurrence of u is equivalent to μ(x1, x2, x3). The only remaining possibility 
is that t = u(t1, t2, t3) where one of the terms t1, t2, t3 is a constant, one is a variable, and the remaining one is of the 
form u(s1, s2, s3) where one of the terms s1, s2, s3 is a constant and the other two are variables, so that all three variables 
appear and the conditions established above for the constants are satisfied. For such terms, the following equivalences hold 
(here {i, j, k} = {1, 2, 3}):

u(u(xi, x j,1), xk,1) ≡ u(xi,u(x j, xk,1),1) ≡ x1 ∨ x2 ∨ x3,

u(u(xi, x j,1),0, xk) ≡ u(0,u(xi, x j,1), xk) ≡ (xi ∨ x j) ∧ xk ≡ u(xi, x j, xk),

u(u(xi,0, x j), xk,1) ≡ u(u(0, xi, x j), xk,1) ≡ (xi ∧ x j) ∨ xk ≡ w(xi, x j, xk),

u(u(xi,0, x j),0, xk) ≡ u(u(0, xi, x j),0, xk) ≡ u(0,u(xi,0, x j), xk) ≡ u(0,u(0, xi, x j), xk) ≡ x1 ∧ x2 ∧ x3.

Clearly none of the above is equivalent to μ(x1, x2, x3). We have reached a contradiction, and we conclude that M �� U, as 
claimed.

Now, to see that �∀ is strictly included in �∃ , consider the NFS T (σ ) where σ := [(x1∧x2) ∨ (¬x1∧x3)]. Clearly, T (σ ) �∃
M since σ(x1, x2, x3) ≡ μ(μ(x1, x2, 0), μ(¬x1, x3, 0), 1). However, it follows from Corollary 60 that T (σ ) �∀ M does not 
hold. �
Lemma 32. If α /∈ M, then there exists a unary linear term t ∈ T (α) such that |t|α = 1 and t ≡ ¬x1 .

Proof. Assume α is n-ary. Since α is not monotone, there exist tuples (a1, . . . , an), (b1, . . . , bn) ∈Bn such that

(a1, . . . ,an) ≤ (b1, . . . ,bn) and α(a1, . . . ,an) > α(b1, . . . ,bn).

Consider the sequence d0, d1, . . . , dn , where

d0 := (a1, . . . ,an),

d1 := (b1,a2, . . . ,an),

...

di := (b1, . . . ,bi,ai+1, . . . ,an),

...

dn := (b1, . . . ,bn).

For all j ∈ {1, . . . , n}, we have d j−1 ≤ d j and d j−1 and d j potentially differ only at the j-th component. Since α(d0) > α(dn), 
there must exist an index i ∈ {1, . . . , n} such that α(di−1) > α(di). It follows that α(b1, . . . , bi−1, x1, ai+1, . . . , an) ≡ ¬x1. �
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4.3. Properties of (quasi-)linear reductions

In this subsection, we show that these reductions entail the preorder �.

Proposition 33. For any sets A and B of terms, A � B implies A � B; in other words, � ⊆ �.

Proof. Given sets of terms A = T (α¬) (or T (α)) and B = T (β¬)) (or (T (β)) such that A � B , there exists a linear term t ∈
T (β) such that α(x1, . . . , xar(α)) ≡ t . Then we can convert any term s of A into an equivalent term in B by replacing every 
occurrence of α by t; more precisely, by replacing each subterm of the form α(s1, . . . , sar(α)) by t{s1/x1, . . . , sar(α)/xar(α)}. 
Since t is linear, the size of the resulting term in B equals |t| · |s|, that is, a constant multiple of |s|. �
Example 34. M � M5 holds, since μ(x, y, z) ≡ μ5(0, 1, x, y, z). For instance, using this equivalence we can convert the term 
t1 = μ(μ(x, y, z), u, v) into the term t2 = μ5(0, 1, μ5(0, 1, x, y, z), u, v). Furthermore, we have |t1| = |t2|. By Proposition 33, 
it follows that M � M5. �

Proposition 35. If A = T (α¬) (or T (α)) and B = T (β¬) (or T (β)) are two sets of terms such that A �∀ B and t1, . . . , tar(α) are terms 
satisfying the conditions of a universal quasi-linear reduction from A to B, then for any f ∈ [A] it holds that C B( f ) ≤ nk(C A( f ))q + 1, 
where n := ar(β), k := maxi{|ti |β} and q := maxi, j{|ti |x j }. Consequently, �∀ ⊆ �.

Proof. Let A and B be two sets of terms such that A �∀ B holds. That is:

∀i,∃ti ∈ T (β), α(x1, . . . , xar(α)) ≡ ti and |ti|xi = 1.

To prove that A � B , we give a recursive and efficient way of converting a term in A into an equivalent term in B . We then 
prove that the size of the converted term is polynomial in the size of the original term in A.

We need to distinguish between the cases when B = T (β¬) and when B = T (β). We consider first the case when 
B = T (β¬). Let s be a term in A. Recall that for a sequence of n integers (ri)

n
i=1, argmaxi(ri) is the smallest integer j such 

that for all i ∈ {1, . . . , n}, r j ≥ ri . We denote by convA→B(s) the term in B equivalent to s inductively defined as follows:

• If s is a variable or a constant, then convA→B(s) := s;
• if s = ¬t , then convA→B(s) := s;
• if s = α(s1, . . . , sar(α)), then

convA→B(s) := t�{convA→B(s1)/x1, . . . ,convA→B(sar(α))/xar(α)},
with � := argmaxi(|convA→B(si)|).

The idea behind this recursive conversion process is to avoid repeating a subterm of maximal size that has already been 
converted. As we will see, this is sufficient to ensure an efficient conversion. The fact that convA→B(s) ≡ s is assured by the 
stability of interpretations under substitution.

Let k := maxi{|ti |β} and q := maxi, j{|ti |x j }.
Let s be a term of A that represents a Boolean function f . We will prove by induction on the structure of terms of A

that |convA→B(s)| ≤ k|s|q .

• Suppose that s is a literal or a constant. Then |convA→B(s)| = 0 = |s| = k|s|q .
• Suppose that s = α(s1, s2, . . . , sar(α)) with si ∈ T (α) for all i. Recall that � is defined by � = argmaxi(|convA→B(si)|). 

Thus:

|convA→B(s)| = |t�{convA→B(si)/xi}| = |t�|β +
ar(α)∑

j=1

|t�|x j |convA→B(s j)|

≤ k + q
ar(α)∑

j=1, j �=�

|convA→B(s j)| + |convA→B(s�)| ≤ k + |convA→B(s1)| + q
ar(α)∑

j=2

|convA→B(s j)|.

The penultimate inequality holds since |t�|x�
= 1, |ti |x j ≤ q and |t�|β ≤ k, and the last inequality holds because 

|convA→B(s1)| ≤ |convA→B(s�)| by the definition of �, whence it follows that

q|convA→B(s1)| + |convA→B(s�)| ≤ |convA→B(s1)| + q|convA→B(s�)|.
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Now suppose without loss of generality that |s1| ≥ |s2| ≥ · · · ≥ |sn−1| ≥ |sar(α)|. Hence

|convA→B(s)| ≤ k(1 + |s1|q + q
ar(α)∑

i=2

|si |q) (by induction hypothesis)

≤ k(1 + |s1| + |s2| + · · · + |sar(α)|)q = k|s|q.
The last inequality holds because of the fact that |si+1|q ≤ |si+1|q−1|si|.

Let f ∈ [A] ⊆ [B] and let s be a term of minimal size in A that represents f . Then we have C A( f ) = |s|. We also have 
C B( f ) ≤ |convA→B(s)|. Since |convA→B(s)| ≤ k|s|q , we have: C B( f ) ≤ |convA→B(s)| ≤ k|s|q = k(C A( f ))q , and the claimed 
inequality clearly holds. Thus, A � B .

We now consider the case when B = T (β). If A = T (α), then the conversion from A to B described above works as 
such, and the same polynomial upper bound for the size of the converted term as above holds. If A = T (α¬), then we 
need a way of dealing with the negations that may appear in a term s ∈ T (α¬). In this case, β must be non-monotone, 
so by Lemma 32, there exists a unary linear term t ∈ T (β) such that |t|β = 1 and t ≡ ¬x1. Let s′ := convA→T (β¬)(s) be the 
conversion of s into an equivalent term in T (β¬) as described above, and let s′′ be the term obtained from s′ by replacing 
each subterm of the form ¬u by t{u/x1}. Then clearly s′′ ∈ T (β) and s′′ ≡ s. If s is a term of the smallest possible size 
in A representing a function f , then there are no iterated negations in s, and the number of negations in s′ is at most 
(n − 1)|s′| + 1, where n := ar(β). Since each negation of s′ gets replaced by a term with a single occurrence of β , we have 
that C B( f ) ≤ |s′′| ≤ |s′| + (n − 1)|s′| + 1 = n|s′| + 1 ≤ nk|s|q + 1 = nk(C A( f ))q + 1. Thus, A � B also in this case. �
Example 36. For the connective μ, the following equivalences hold:

μ(x, y, z) ≡ (y↑z)↑(x↑((y↑1)↑(z↑1))),

μ(x, y, z) ≡ (x↑z)↑(y↑((x↑1)↑(z↑1))),

μ(x, y, z) ≡ (y↑x)↑(z↑((y↑1)↑(x↑1))).

As each equivalence is linear in one variable (x, y and z respectively), M �∀ S holds. By Proposition 35, we deduce that 
M � S. �

We can handle the case of existential quasi-linear reduction if one of the connectives is a symmetric function.

Proposition 37. Consider two sets of stratified terms A = T (α¬) and B = T (β¬). If A �∃ B and α is a symmetric function, then 
A �∀ B; consequently, A � B.

Proof. The symmetry of α allows us to exhibit a universal quasi-linear reduction from the reduction A �∃ B . We can then 
apply Proposition 35. �
4.4. Equivalences between basic Sheffer and basic quasi-Sheffer NFSs

As an application of linear reducibility, we show that basic Sheffer and basic quasi-Sheffer NFSs are all equivalent to 
M and, consequently, strictly more efficient than other basic non-Sheffer and non-quasi-Sheffer NFSs. For that purpose, we 
adapt the median decomposition scheme of [14] to terms.

Proposition 38. The basic NFSs U, W, and M are pairwise equivalent, i.e., U ∼ W ∼ M.

Proof. Consider the equivalences

u(x, y, z) ≡ μ(μ(x,1, y),0, z) and μ(x, y, z) ≡ u(u(x,0, y),u(x, y, z),1).

We have |μ(μ(x, 1, y), 0, z)|w = 1 for all w ∈ {x, y, z} and |u(u(x, 0, y), u(x, y, z), 1)|z = 1. Consequently, U � M and M �∃ U
hold. Propositions 33 and 37 and the symmetry of μ imply U ∼ M. A dual reasoning can be used to prove W ∼ M. �
Proposition 39. The basic NFSs S, Sd , and M are pairwise equivalent, i.e., S ∼ Sd ∼ M.

Proof. Consider the equivalences

x↑y ≡ μ(¬x,1,¬y) and μ(x, y, z) ≡ (y↑z)↑(x↑((y↑1)↑(z↑1)))
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(see Example 36). Remark that

|μ(¬x,1,¬y)|x = |μ(¬x,1,¬y)|y = 1 and |(y↑z)↑(x↑((y↑1)↑(z↑1)))|x = 1.

Thus, S �∃ M and M �∃ S both hold. Remark also that both μ and ↑ are symmetric functions. From Proposition 37 it then 
follows that M ∼ S. A dual reasoning can be used to prove Sd ∼ M. �
Proposition 40 (Median decomposition scheme [14, Theorem 17]). Let α be a monotone Boolean function. Then for any k ∈
{1, . . . , ar(α)}:

α(x1, . . . , xar(α)) ≡ μ(α(x1, . . . , xar(α)){0/xk}, xk,α(x1, . . . , xar(α)){1/xk}).

The term on the right side of the above equivalence is called a median decomposition of α with respect to the pivot 
variable xk .

The subterms α(x1, . . . , xar(α)){c/xk}, c ∈ B, appearing in the median decomposition induce monotone functions, pro-
vided that α is monotone. Applying the median decomposition scheme recursively on the subterms α(x1, . . . , xar(α)){c/xk}, 
c ∈B, selecting always a new pivot variable, produces a term in M representing α. Note that the firstly chosen pivot variable 
appears only once in this term.

This method of constructing a median representation of a monotone Boolean function was presented as an algorithm in 
[7]. The algorithm was then adapted for arbitrary Boolean functions by considering an encoding of a non-monotone function 
as a monotone function having twice as many variables.

Example 41. The function α := [(x∧y)∧z] is monotone. By the median decomposition scheme applied to x, the equivalence

α(x, y, z) ≡ μ(α(0, y, z), x,α(1, y, z))

holds. After decomposing the remaining subterms in α with respect to y and z, we obtain the conversion equivalence

α(x, y, z) ≡ μ(μ(μ(0, z,0), y,μ(0, z,0)), x,μ(μ(0, z,0), y,μ(0, z,1)))

in which x only occurs once.2 �

Proposition 42. For all n ≥ 1, the basic NFSs M2n+1 and M are equivalent, i.e., M2n+1 ∼ M.

Proof. From the median decomposition scheme and the fact that μ2n+1 is a monotone and symmetric function, it follows by 
Proposition 37 that M � M2n+1. By Proposition 37 again and the equivalence μ(x, y, z) ≡ μ2n+1(z, xn, yn), M2n+1 � M. �

Propositions 38, 39 and 42, together with Theorem 27, give us the classification of Fig. 2 for basic NFSs.

Basic (quasi-)Sheffer NFSs

Other basic NFSs

M M2n+1S USdW

P PdCD

∼ ∼∼ ∼ ∼

‖ ‖ ‖

Fig. 2. Semilattice of basic NFSs ordered by �.

5. Optimality for monotonic NFSs

In this section we will show that the optimal monotonic NFSs are exactly those that use a single connective or one 
connective with negation. For this, we first show that the median NFS is optimal among monotonic NFSs (Theorem 44). 
Then, by making good use of reductions between NFSs, we will show by case analysis that every monotonic NFS based on 
a single connective and the negation is at least as efficient as the median NFS.

2 Remark that the right hand side of this equivalence can be simplified further into α(x, y, z) ≡ μ(0, x, μ(0, y, z)).
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5.1. Optimality of the median normal form M

In this subsection, we extend the results of the previous section by showing that M is optimal among monotonic NFSs.

Proposition 43. For any pseudo-monotone α, M � T (α) holds.

Proof. Since α is pseudo-monotone, there exists a monotone function g and literals li ∈ {xi, ¬(xi)}, 1 ≤ i ≤ n such that 
α(x1, . . . , xn) ≡ g(l1, . . . , ln). By applying the median decomposition scheme on g , choosing the first pivot variable in differ-
ent ways, we can produce n terms ti ∈ T (μ) such that ti ≡ g(x1, . . . , xn) and |ti |xi = 1. Define t′

i := ti{l1/x1, . . . , ln/xn}; we 
have t′

i ∈ T (μ¬), t′
i ≡ α(x1, . . . , xn) and |t′

i |xi = 1. Using the self-duality of μ to propagate negations on variables, it is not 
difficult to see that T (α) �∀ T (μ¬) = M. By Proposition 35, we obtain that M � T (α). �
Theorem 44. M is optimal among monotonic NFSs.

Proof. We first show by induction on the number n of connectives that for any irredundant set of terms T (α1 · · ·αn), where 
each αi is a pseudo-monotone function, the inequality M � T (α1 · · ·αn) holds.

If n = 1, then the result holds by Proposition 43.
Suppose that the induction hypothesis holds for any natural number smaller than n. We will show that it holds for n. 

Set Ti := T (α1 · · ·αi), for i ≤ n.
For a given function f , consider a term t ∈ Tn such that CTn ( f ) = |t|, and [t] ∼= f . The term t can be written as 

t′{t1/x1, . . . , t j/x j} where t′ is a j-ary term in Tn−1, for some integer j, and ti ∈ T (αn) for all i ≤ j.
We have CTn−1 ([t′]) = |t′| and CT (αn)([ti]) = |ti | by the minimality of t . Otherwise it contradicts the fact that t is a term 

of minimal size in Tn representing f . Moreover, CTn ([t]) = CTn−1 ([t′]) + 

j
i=1CT (αn)([ti]) by irredundancy.

By the induction hypothesis, M � Tn−1. Consequently, there exists a polynomial P such that CM([t′]) ≤ P (CTn−1 ([t′])). As 
the size of the minimal term in M equivalent to t′ is bounded by P (CTn−1 ([t′])), we know that it contains no more than 
3P (CTn−1 ([t′])) leaves since μ is a ternary connective. Consequently, j ≤ 3P (CTn−1 ([t′])).

By Proposition 43, there exists a polynomial Q such that for all i, 1 ≤ i ≤ j, CM([ti]) ≤ Q (CT (αn)([ti])). Consequently, we 
have:

CM([t]) ≤ CM([t′]) + 

j
i=1CM([ti]) ≤ P (CTn−1([t′])) + 3P (CTn−1([t′]))max

i
Q (CT (αn)([ti]))

≤ P (CTn ([t])) + 3P (CTn ([t]))Q (CTn ([t])) = R(CTn ([t]))
with R = P + 3P · Q . In the above, the last inequality holds because CTn−1 ([t′]) ≤ CTn ([t]), CT (αn)([ti]) ≤ CTn ([t]) for all i, 
and P and Q are polynomials with nonnegative coefficients and hence the polynomial functions induced by P and Q are 
monotone increasing.

We have shown that M � T (α1 · · ·αn) holds for any irredundant set of terms T (α1 · · ·αn) with pseudo-monotone con-
nectives α1, . . . , αn . Consequently, it holds for any monotonic NFS. �
5.2. Optimality of monotonic Sheffer and quasi-Sheffer NFSs

In this subsection, we generalize the results obtained in Subsection 4.4 by showing that any monotonic Sheffer or quasi-
Sheffer NFS is optimal.

Lemma 45. For any NFS T (α), we have T (α) ∼ T (α¬).

Proof. Consider an NFS T (α). Clearly, T (α¬) � T (α) is immediate because a term in T (α) is also a term in T (α¬). By 
Fact 16, [T (α)] = C(α) ◦ I . The function α is necessarily non-monotone and non-constant. (For, if α ∈ M , then [T (α)] =
C(α) ◦ I ⊆ M ◦ I = M � � and T (α) is not an NFS.) Thus, there exist constants c1, . . . , car(α)−1 and a permutation π such 
that α(π(c1, . . . , car(α)−1, x)) ≡ ¬x. This highlights a reduction T (α¬) � T (α). �
Theorem 46. All monotonic Sheffer and quasi-Sheffer NFSs are optimal.

Proof. By Lemma 45, it suffices to consider sets of terms of the form T (α¬) such that [T (α¬)] = � and to show that 
T (α¬) ∼ M holds. By Theorem 44, M � T (α¬) holds. It remains to show that T (α¬) � M also holds. This inequality directly 
depends on the nature of the function α. By Fact 16, we need to consider functions α satisfying � = [T (α¬)] = C(α) ◦
C(¬) ◦ I = C(α) ◦ �(1). The clones C satisfying C ◦ �(1) = � can be read off from the table of clone composition in [5]; 
they are the following: �, T0, T1, Tc, M , M0, M1, Mc, S , Sc, S M , and for k = 2, . . . , ∞, Uk , MUk , TcUk , McUk , Wk , 
MWk , TcWk , McWk . Thus, we need to consider functions α that generate one of the clones listed above. Note that the 
clones M , M0, M1, MUk , MWk are not generated by a single function, so these need not be considered. In the following 
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subsection, we are going to establish for each one of the relevant clones C a proposition of the form: If C(α) = C , then 
T (α¬) � M. More explicitly, the clones and the respective propositions are the following: S M (Proposition 48), McUk , 
McWk , for k = 2, . . . , ∞ (Proposition 50), Mc (Proposition 52), Uk , TcUk , Wk , TcWk , for k = 2, . . . , ∞ (Proposition 53), �, 
T0, T1, Tc, S , Sc (Proposition 55). Putting all these propositions together, the current theorem follows. �
5.3. Proof of optimality

In this subsection, we will use the following notation. Given a tuple x and a permutation π , π(x) indicates the tuple 
obtained by permuting the coordinates of x following π . For b ∈B and an integer k > 0, let bk be a shorthand notation for 
b, . . . , b with k occurrences of b.

5.3.1. The clone S M

Lemma 47. Let f ∈ S M be a function of arity n ≥ 2 that is not a projection, and let x be a minimal true point of f . Then there exists a 
true point y such that d(x, y) = n − 1. Furthermore, the unique common coordinate of x and y has value 1.

Proof. Let x be a minimal true point of the function f : Bn → B in S M . If w(x) = 0, then f is constant (equal to 1) 
by monotonicity; this case does not occur, because S M does not contain any constant function. If w(x) = 1, then f is a 
projection by monotonicity and self-duality. We can thus assume that w(x) ≥ 2, and, without loss of generality, x = (1, 1k, 0l)

with k > 0 and k + l + 1 = n. Then z := (0, 1k, 0l) is a false point because x is a minimal true point. Thus y := z = (1, 0k, 1l)

is a true point by self-duality. Also, we have d(x, y) = k + l = n − 1, and the common coordinate of x and y is 1. �
Proposition 48. If α is a connective such that C(α) = S M, then T (α¬) � M.

Proof. Note that every self-dual monotone function is either a projection or has at least three essential arguments. Since α
generates the clone S M , it cannot be a projection; hence ar(α) ≥ 3. Since α is monotone and self-dual, we can separate its 
true and false points in two sets of same size (self-duality) and such that no true point of α is covered by a false point of 
α (monotonicity).

By Lemma 47, there exist two true points x, y with x minimal, at distance ar(α) − 1: there exists exactly one coordinate 
in which both are equal to 1. There exists a permutation π such that π(x) = (1, 1k, 0l) and π(y) = (1, 0k, 1l), for some 
positive integers k, l such that 1 + k + l = ar(α).

Let α′ be the ternary function

α′ := [α(π−1(x1, xk
2, xl

3))].
Since α′ is obtained from α by composing with projections, we have α′ ∈ S M .

We are going to show that α′ = μ. We have α′(1, 1, 0) = α(x) = 1 and α′(1, 0, 1) = α(y) = 1. Since x is a minimal true 
point of α and π−1(1, 0, 0) < x, we have α′(1, 0, 0) = α(π−1(1, 0, 0)) = 0. By the self-duality of α′ we obtain α′(0, 0, 1) =
α′(0, 1, 0) = 0, α′(0, 1, 1) = 1, and by the monotonicity of α′ we get α′(0, 0, 0) = 0, α′(1, 1, 1) = 1. Thus α′ = μ. Recall that 
the median μ is symmetric, which yields the following “partial” symmetry for α:

α(x1, xk
2, xl

3) ≡ α(x2, xk
1, xl

3) ≡ α(x3, xk
1, xl

2).

This means that M �∀ T (α¬) holds, with t1 = α(x1, xk
2, x

l
3), t2 = α(x2, xk

1, x
l
3), and t3 = α(x3, xk

1, x
l
2). Thus by Proposition 35

we obtain T (α¬) � M. �
5.3.2. The clones McUk and McWk

Lemma 49. For any clone C with � � C ⊆ M, any generator of C has at least two minimal true points.

Proof. Monotone functions with fewer than two minimal true points are constants, projections, or conjunctions of variables 
and hence cannot generate C . �

Recall that u and w are generators of minimal arity of McU∞ and McW∞ , respectively.

Proposition 50. If α is a connective such that C(α) = McUk or C(α) = McWk for some k ∈ {2, . . . , ∞}, then T (α¬) � M.

Proof. We study the case when C(α) = McUk for some k ∈ {2, . . . , ∞}. The dual case McWk can be proved similarly. First, 
recall from Proposition 38 that U ∼ W ∼ M. Therefore, it will suffice to show that T (α¬) � U or T (α¬) � W or T (α¬) � M.
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Fig. 3. Hasse diagrams of the different possibilities for α′ .

By Lemma 49, there exist two minimal incomparable true points x, y for α. Since α ∈ U2, they have a coordi-
nate in common with the value 1. Permuting arguments if necessary, we may assume without loss of generality that 
x = (1k, 1l, 1, 0m, 0n) and y = (0k, 1l, 1, 1m, 0n) for some integers k, l, m, n such that k > 0, m > 0, l ≥ 0, n ≥ 0 and 
1 + k + l + m + n = ar(α).

Let α′ be the ternary function defined by

α′ := [α(x1,1k+l−1, x3, xm
2 ,0n)].

Note that α′ is monotone, because it is obtained from the monotone function α by identifying variables and substituting 
constants for variables, in other words, α′ ∈ C(α) ◦ I ⊆ M ◦ I = M .

We will show that α′ ∈ {u, μ, w}. We can deduce from the information we have thus far that the function α′ satisfies 
the following (see the leftmost Hasse diagram in Fig. 3):

• α′(1, 0, 1) = α(x) = 1. By monotonicity, α′(1, 1, 1) = 1. Moreover, since x is a minimal true point of α, it follows that 
(1, 0, 1) is a minimal true point of α′; hence α′(0, 0, 1) = α′(1, 0, 0) = α′(0, 0, 0) = 0.

• α′(0, 1, 1) = α(y′), where y′ = (0, 1k−1, 1l, 1, 1m, 0n). Since y′ > y and y is a (minimal) true point of α, it follows that 
α′(0, 1, 1) = α(y′) = 1.

The values of α′ at (0, 1, 0) and (1, 1, 0) remain undetermined, but the monotonicity of α′ gives α′(0, 1, 0) ≤ α′(1, 1, 0). 
This leaves us with three possibilities (see the Hasse diagrams in Fig. 3):

• α′(0, 1, 0) = α′(1, 1, 0) = 0, in which case α′ = u;
• α′(0, 1, 0) = 0, α′(1, 1, 0) = 1, in which case α′ = μ;
• α′(0, 1, 0) = α′(1, 1, 0) = 1, in which case α′ = w.

Let us consider the consequences of the three different possibilities for α′:

1. If α′ = u, then the equivalence u(x1, x2, x3) ≡ α(x1, 1k+l−1, x3, xm
2 , 0n) holds. Recall that u(x1, x2, x3) ≡ (x1∨x2)∧x3, 

which shows, by the symmetry of ∨, that u is invariant under the transposition of the first two arguments, that is,

u(x1, x2, x3) ≡ u(x2, x1, x3),

which yields the following equivalence:

u(x1, x2, x3) ≡ α(x2,1k+l−1, x3, xm
1 ,0n).

We have found for each variable xi (i ∈ {1, 2, 3}) a term in T (α¬) that is equivalent to u(x1, x2, x3) and has only one 
occurrence of xi . Consequently, U �∀ T (α¬) holds. Thus by Proposition 35 we obtain T (α¬) � U.

2. If α′ = μ, then μ(x1, x2, x3) ≡ α(x1, 1k+l−1, x3, xm
2 , 0n). Since μ is a symmetric function, T (μ¬) �∀ T (α¬) holds by 

Proposition 37, and T (α¬) � M.
3. If α′ = w, then following the same reasoning as above in case 1 (recall that w(x1, x2, x3) ≡ (x1 ∧ x2) ∨ x3) we obtain that 

T (α¬) � W. �
5.3.3. The clone Mc

Lemma 51. Let α be a connective such that C(α) = Mc . Then there exists a binary linear term t ∈ T (α) such that t ≡ x1 ∧ x2 .
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Proof. Let α be an n-ary connective such that C(α) = Mc. Let a be a minimal true point of α with w(a) ≥ 2 (there must 
exist such a point, for otherwise α would be a constant, a projection, or a disjunction of variables and hence not a generator 
of Mc). Then there exist indices p, q ∈ {1, . . . , n} with p �= q such that ap = aq = 1. For i ∈ {1, . . . , n}, let

ti :=

⎧⎪⎨
⎪⎩

ai if i /∈ {p,q},

x1 if i = p,

x2 if i = q.

Then α{t1/x1, . . . , tn/xn} is a binary linear term in T (α) that is equivalent to x1 ∧ x2. �
Proposition 52. If α is a connective such that C(α) = Mc , then T (α¬) � M.

Proof. Let α be an n-ary generator of the clone Mc. Consider the function α′ of arity n + 1 defined by

α′ := [α(x1, . . . , xn)∧xn+1].
Note that α′ is monotone and constant-preserving, and for every true point a of α′ we have an+1 = 1; hence α′ ∈ McU∞ . 
Being a generator of Mc, the function α is not a member of �; consequently, we must have also that α′ /∈ �. Therefore, α′
is a generator of McU∞ , and it follows from Proposition 50 that T (α′¬) � M.

Let t be the binary linear term in T (α) equivalent to x1 ∧x2 provided by Lemma 51, and let t′ := t{α(x1, . . . , xn)/x1, xn+1/

x2}. Then t′ is a linear term in T (α) and clearly α′(x1, . . . , xn+1) ≡ t′ . Therefore, T (α′¬) � T (α¬), as witnessed by the term 
t′ . By Proposition 33, we have T (α¬) � T (α′¬). It now follows from the transitivity of � that T (α¬) � M, as claimed. �
5.3.4. The clones Uk, TcUk, Wk and TcWk

Proposition 53. If α is a pseudo-monotone function such that C(α) equals Uk, TcUk, Wk or TcWk for some k ∈ {2, . . . , ∞}, then 
T (α¬) � M.

Proof. Let α be an n-ary pseudo-monotone function, and assume first that C(α) ∈ {Uk, TcUk}. As α /∈ M , Lemma 32 provides 
a unary linear term u ∈ T (α) with |u|α = 1 such that u ≡ ¬x1.

Recall from Fact 1 that α is pseudo-monotone if and only if there exist a monotone function g : Bn → B and a subset 
S ⊆ {1, . . . , n} such that for all x1, . . . , xn ∈B, α(x1, . . . , xn) = g(l1, . . . , ln), where li = xi if i ∈ S and li = ¬(xi) if i /∈ S .

Then g is of the form [α(l′1, . . . , l′n)], with l′j ∈ {x j, ¬x j}, for all j ∈ {1, . . . , n}. Therefore there exists a term t ∈ T (α)

satisfying |t|xi = 1, for all i such that 1 ≤ i ≤ n, and g = [t].
Note that g /∈ V . (Suppose, to the contrary, that g ∈ V . Then α is either a disjunction of negated variables or a disjunction 

of both negated and unnegated variables. By a suitable choice of i1, . . . , in ∈ {1, 2}, we obtain α(xi1 , . . . , xin ) ≡ ¬x1 ∨ ¬x2 ≡
x1↑x2 or α(xi1 , . . . , xin ) ≡ ¬x1∨x2. Since C(↑) = � and C([¬x1∨x2]) = W∞ , we have W∞ ⊆ C(α), which contradicts the 
initial assumption.) If g has at least 2 minimal true points, then one can see easily that there exist i, j ∈ {1, . . . , n}, i < j, 
and constants c1, . . . , cn such that x ∨ y ≡ g(c1, . . . , ci−1, x, ci+1, . . . , c j−1, y, c j+1, . . . , cn). If g has a unique minimal true 
point, then it is a conjunction of variables. Using De Morgan’s laws and the above representations of ¬ and g in terms of 
α, we see that both ∧ and ∨ can be obtained as the term function of some binary term t ∈ T (α) such that each variable 
occurs in t only once.

Let now h := [g(x1, . . . , xn) ∨ xn+1]. Clearly, h is a generator of McW∞ (because g /∈ V ) and, by construction, T (h¬) is lin-
early reducible to T (α¬). By Proposition 50 it then follows that T (α¬) � M. The remaining cases when C(α) ∈ {Wk, TcWk}
follow by a dual reasoning. �
5.3.5. The clones �, T0 , T1 , Tc , S and Sc

Lemma 54. For any connective α /∈ M ∪ L, there exists a binary linear term t ∈ T (α) such that t ≡ x1 ∧ x2 .

Proof. Let α be a connective such that α /∈ M ∪ L. Let Pα be a polynomial normal form representation of α that is of 
smallest possible size. Then Pα is of the form C1 ⊕ C2 ⊕ . . .⊕ C p , where each subterm Ci is either a variable, constant, or a 
conjunction of variables. There must be at least one Ci that is a conjunction of at least two variables, or else α would be a 
linear function. Let C be the smallest (w.r.t. size) subterm among the Ci that is a conjunction of variables. Without loss of 
generality, we may assume that C = x1 ∧ x2 ∧ . . .∧ xk .

Let now α′ be the term obtained from α(x1, . . . , xn) by substituting 1 for every occurrence of xi , for 3 ≤ i ≤ k, and by 
substituting 0 for every occurrence of x j , for j > k. The resulting term α′ is linear and equivalent to one of the following:
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x1∧x2,

(x1∧x2)⊕1 ≡ ¬x1∨¬x2,

(x1∧x2)⊕x1 ≡ x1∧¬x2,

(x1∧x2)⊕(x1⊕1) ≡ ¬x1∨x2,

(x1∧x2)⊕x2 ≡ ¬x1∧x2,

(x1∧x2)⊕(x2⊕1) ≡ x1∨¬x2,

(x1∧x2)⊕(x1⊕x2) ≡ x1∨x2,

(x1∧x2)⊕((x1⊕x2)⊕1) ≡ ¬x1∧¬x2.

It is now clear that the conjunction x1∧x2 can be obtained from α′ by negating variables or the entire term α′ . Since α is 
not monotone, Lemma 32 provides a linear term t ∈ T (α) representing the negation. Using α′ and t , we can now build a 
linear term in T (α) that is equivalent to x1∧x2. �
Proposition 55. If α is a pseudo-monotone connective such that Sc ⊆ C(α), then T (α¬) � M.

Proof. Assume that α is an n-ary pseudo-monotone function such that Sc ⊆ C(α), and define α′ := [α(x1, . . . , xn)∧xn+1]. 
The function α′ is clearly 1-separating because xn+1 must take value 1 in every true point; hence α′ ∈ U∞ . Being a generator 
of a clone containing Sc, the function α is not in M ∪ L; it follows that α′ /∈ M . Consequently, α′ is a generator of U∞ or of 
TcU∞ . There exists a linear reduction from T (α′¬) to T (α¬), as witnessed by the linear term t{α(x1, . . . , xn)/x1, xn+1/x2} ∈
T (α), where t ∈ T (α) is the binary linear term representing ∧ that is provided by Lemma 54 (recall that α /∈ M ∪ L). 
Now T (α¬) � T (α′¬) by Proposition 33, and our desired conclusion follows because α′ is clearly pseudo-monotone and 
T (α′¬) � M by Proposition 53. �
6. Other NFSs

In this subsection we consider the remaining NFSs, namely, those whose connectives are in V ∪ L ∪� and those generated 
by a function that is not pseudo-monotone.

6.1. NFSs whose connectives are in V ∪ L ∪ �

We look first into NFSs whose connectives are in V ∪ L ∪ �. In view of Proposition 20 we may focus on NFSs with at 
most 3 connectives. In [5] it was shown that M ≺ C, D, P, Pd. However the connectives considered were those of minimal 
arity, i.e., the binary disjunction ∨ and conjunction ∧, and the ternary sum ⊕3. These results still hold for connectives of 
arbitrary arity. Given a set of terms of the form T = T (αβ¬), using the clone composition table in [5], it is not difficult to 
verify that if T is an NFS the only possibilities are α ∈ �, β ∈ V or α ∈ V , β ∈ �. Similarly, for a set of terms T (αβ) to be 
an NFS, the only possibilities are α ∈ L, β ∈ � or α ∈ L, β ∈ V .

The following proposition shows that any NFS based on two connectives, possibly with negation, is equivalent to the 
conjunctive, disjunctive, polynomial, or dual polynomial NFS.

Proposition 56. For any connectives α, β , γ such that C(α) ◦ I = L, C(β) = �c , C(γ ) = V c , we have T (αβ) ∼ P, T (αγ ) ∼ Pd , 
T (βγ¬) ∼ C, T (γ β¬) ∼ D.

Proof. Without loss of generality, we may assume that α, β , and γ are of arity �, m, and n, respectively, and that they have 
no inessential arguments. Then � ≥ 2, m ≥ 2, n ≥ 2, and

α(x1, . . . , x�) ≡ x1 ⊕ x2 ⊕ · · · ⊕ x� ⊕ c =: tα ∈ T (⊕) for some c ∈ B,

β(x1, . . . , xm) ≡ x1 ∧ x2 ∧ · · · ∧ xm =: tβ ∈ T (∧),

γ (x1, . . . , xn) ≡ x1 ∨ x2 ∨ · · · ∨ xn =: tγ ∈ T (∨).

Moreover,

x1 ∧ x2 ≡ β(x1, x2,1, . . . ,1) =: t∧ ∈ T (β),

x1 ∨ x2 ≡ γ (x1, x2,0, . . . ,0) =: t∨ ∈ T (γ ).

In order to represent ⊕ as a term t⊕ ∈ T (α), we need to consider different cases: let
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t⊕ :=

⎧⎪⎨
⎪⎩

α(x1, x2,0, . . . ,0, c), if � ≥ 3,

α(x1, x2), if � = 2 and c = 0,

α(α(x1, x2),0), if � = 2 and c = 1.

In each case it holds that x1 ⊕ x2 ≡ t⊕ .
The terms tα , tβ , tγ , t⊕ , t∧ , t∨ are all linear, and now we can make straightforward translations between T (αβ) and P, 

between T (αγ ) and Pd, between T (βγ¬) and C, and between T (γ β¬) and D.
For example, given a term t ∈ T (αβ), we obtain an equivalent term t′ ∈ P by replacing each subterm βt1 . . . tm of t

by tβ{t1/x1, . . . , tm/xm} and each subterm αt1 . . . t� by tα{t1/x1, . . . , t�/x�}. Since the terms tα and tβ are linear and since 
|tα |⊕ = � and |tβ |∧ = m − 1, we have |t′| = |t′|⊕ + |t′|∧ = �|t|α + (m − 1)|t|β ≤ max(�, m − 1)|t|. It follows that for every 
function f , CP( f ) ≤ 2CT (αβ)( f ), i.e., P � T (αβ).

Conversely, given a term t ∈ P, we obtain an equivalent term t′ ∈ T (αβ) by replacing each subterm ∧(t1, t2) of t by 
t∧{t1/x1, t2/x2} and each subterm ⊕(t1, t2) by t⊕{t1/x1, t2/x2}. Since the terms t⊕ and t∧ are linear and since |t⊕|α ≤ 2
and |t∧|β = 1, we have |t′| = |t′|α + |t′|β ≤ 2|t|⊕ + |t|∧ ≤ 2|t|. It follows that for every function f , CT (αβ)( f ) ≤ 2CP( f ), i.e., 
T (αβ) � P.

The other claimed equivalences follow by similar arguments. �
Example 57. For example, the term ∨5(x1, x2, x3, x4, x5) of size 1 involving the 5-ary disjunction ∨5 is equivalent to the 
term ∨(x1, ∨(x2, ∨(x3, ∨(x4, x5)))) of size 4. Similarly, the term ∨(x1, x2) is equivalent to the term ∨5(x1, x2, 0, 0, 0). By 
Proposition 56, D = T (∨∧¬) ∼ T (∨5∧¬). �

6.2. Non-monotonic NFSs

The case of non-monotonic NFSs still eludes us. However we conjecture that non-monotonic (quasi-)Sheffer NFSs are 
strictly more efficient than other NFSs.

To motivate our intuition, consider the set of terms � = T (σ ) where σ := [(x1∧x2) ∨ (¬x1∧x3)]. Observe that σ
is not pseudo-monotone since σ(x1, 1, 0) ≡ x1 and σ(x1, 0, 1) ≡ ¬x1. Also, from the equivalences σ(x1, 0, 1) ≡ ¬x1, and 
σ(x1, x2, 0) ≡ x1∧x2, it follows that � is a Sheffer NFS. Moreover, � is at least as efficient as any other Sheffer or quasi-
Sheffer NFS.

Lemma 58. For any set of terms T (α¬) (resp. T (α)), � � T (α¬) (resp. T (α)).

Proof. By Boole’s expansion theorem (also known as Shannon’s decomposition [18]), for any connective α of arity n:

α(x1, . . . , xn) ≡ t j = σ(x j,α(x1, . . . , xn){1/x j},α(x1, . . . , xn){0/x j}).
As for all j, |t j |x j = 1, we have T (α¬) �∀ �. By Proposition 35, � � T (α¬). �

However, the converse seems unlikely, due to the fact that σ is neither increasing nor decreasing in x1. As we will see, 
this implies that x1 must occur more than once in any term t ∈ T (α¬) representing σ , whenever α is a monotone function, 
and hence that α occurs more than once in t .

Proposition 59. Let α be a monotone function. If t ∈ T (α¬) is a term in which the variable xi occurs exactly once, then [t] is either 
increasing or decreasing in the i-th argument.

Proof. We prove the claim by induction on the structure of terms. If t = xi , then [t] = e(n)
i , a projection, which is clearly 

increasing in the i-th argument. If t = ¬t′ for some term t′ such that [t′] is increasing (decreasing, resp.) in the i-th 
argument, then [t] is decreasing (increasing, resp.) in the i-th argument. Assume now that t = α(t1, . . . , tn) for some terms 
t1, . . . , tn ∈ T (α¬). Then xi appears in exactly one of the subterms t1, . . . , tn , say in tp . By the induction hypothesis, [tp] is 
either increasing or decreasing in its i-th argument. Set a = (a1, . . . , an) and b = (a1, . . . , ai−1, bi, ai+1, . . . , an) with ai ≤ bi . 
Since for all j ∈ [n] \ {p}, the variable xi does not appear in t j and hence [t j] does not depend on the i-th argument, we 
have [t j](a) = [t j](b). If [tp] is increasing in the i-th argument, then [tp](a) ≤ [tp](b), and the monotonicity of α implies

[t](a) = α([t1](a), . . . , [tp](a), . . . , [tn](a)) ≤ α([t1](b), . . . , [tp](b), . . . , [tn](b)) = [t](b),

so [t] is increasing in the i-th argument. Similarly, if [tp] is decreasing in the i-th argument, then so is [t]. �
Corollary 60. Let α and β be connectives. If α is not pseudo-monotone and β is monotone, then there is no universal quasi-linear 
reduction from T (α¬) to T (β¬).
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Assume now that β is a monotone connective and α is an n-ary connective that is not pseudo-monotone. Then there is 
an index i ∈ {1, . . . , n} such that α is neither increasing nor decreasing in the i-th argument. Let t be a term in T (β¬) such 
that [t] = α. By Proposition 59, we must have |t|xi > 1. Consider now the following terms in T (α): s1 := α(x1, . . . , xn), and 
for k ≥ 1,

sk+1 := α(x1, . . . , xi−1, sk{xi/x1, xi+1/x2, . . . , xi+N(k)−1/xN(k)}, xi+N(k), . . . , xN(k+1)),

where N(k) := k · (n − 1) + 1. Let fk := [sk], for k ≥ 1. We clearly have CT (α)( fk) ≤ |sk|α = k. We obtain an equivalent term 
s′

k ∈ T (β¬) by replacing in sk each subterm α(t1, . . . , tn) by t{t1/x1, . . . , tn/xn}. The size of the resulting terms s′
k grows 

exponentially in k due to the repeated variable xi in t . Of course, this straightforward replacement of the connective α by 
the term t does not necessarily produce a term of minimal size in T (β¬) representing fk , so we cannot really conclude 
anything about CT (β¬)( fk). We are nevertheless lead to the following conjecture.

Conjecture 61. If A is a non-monotonic quasi-Sheffer NFS, then A ≺ M.

7. Conclusion

In this paper we have extended the framework of [5] by adapting the notion of NFSs to sets of terms, which allows 
several generalizations of results, e.g., of Theorem 27. In particular, we have shown that the results do not depend on the 
choice of connectives (in particular, on their arity), as long as they are pseudo-monotone: the optimal monotonic NFSs are 
exactly those of the form T (α) or T (α¬), where α is a pseudo-monotone connective. Moreover, optimal monotonic NFSs 
are pairwise equivalent.

However, this contribution reveals several challenging issues that constitute topics of further research. We mention some 
topics of ongoing research below:

• Prove Conjecture 61 in order to shed light on the classification of all NFSs. Moreover, study the complexity of redundant 
systems and systems with unbounded stratification (or alternation [4]).

• Study stratified Boolean circuits, i.e., terms with sharing in addition to Boolean terms. It is noteworthy that in the case 
of circuits with variable sharing, there is no distinction between B � A, B �∀ A, or B �∃ A. However, other measures 
can be considered, e.g., the number of wires between the gates of the circuit.

• Extend the current setting to multiple-valued operations, i.e., defined on a set of cardinality at least 3. Here, one of 
the main difficulties follows from the fact that the set of clones on a finite set with at least three elements has the 
cardinality of continuum (see, e.g., [12]) and there is no complete description of the corresponding clone lattice.
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