
RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 1/50

Propositional logic Proof systems Horn clauses Computability

KRR2022 - Week 1: Propositional logic
Course

Pierre Mercuriali
Responsible instructor: Carlos Hernandez Corbato

Spring 2022

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 2/50

Propositional logic Proof systems Horn clauses Computability

What is (formal) logic? How does it help us roboticians?

The chicken is ready to eat.
I saw a man on a hill with a telescope.
He fed her cat food.

How to communicate with people, robots... without ambiguity? How to
clearly state what we know or do not know, as well as our goals?

Socrates is a man all men are mortal
Therefore Socrates is mortal

How to generalise this "reasoning structure"?

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 3/50

Propositional logic Proof systems Horn clauses Computability

Short history

• With Aristotle, logic was conceived as a study of such syntactic
"reasoning structures" (syllogisms).

• Very early, the idea appears of creating artificial formal languages for
logical investigations.

• With Leibniz, the inspiration becomes mathematic, centered around
symbolic manipulation.

"The only way to rectify our reasonings is to make them as
tangible as those of the Mathematicians, so that we can find our
error at a glance, and when there are disputes among persons,
we can simply say: Let us calculate, without further ado, to see
who is right. " (The Art of Discovery, 1685)

• Afterwards, Frege, Peano, Russell, etc. devise formal notations and
rules to work with them: modern formal logic is born.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 4/50

Propositional logic Proof systems Horn clauses Computability

Propositional logic: overview
Propositional logic: syntax and semantics

Proof systems: theorem proving and resolution, model checking

Horn clauses, forward and backward chaining
Horn clauses
SLD resolution

Computability and complexity
Computability
Complexity

Propositional logic
Propositional logic is one of the simplest logics, yet it is powerful enough
for many knowledge-based applications. It is the starting point for logics
that are even more powerful in terms of description: first-order logic,
description logics...

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 5/50

Propositional logic Proof systems Horn clauses Computability

Syllabus

Syllabus:
• Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach.

(Fourth edition, 2021)
• Ertel W, Mast F. Introduction to Artificial Intelligence. (Second

edition, 2017)

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 6/50

Propositional logic Proof systems Horn clauses Computability

What happens if it rains?

• In propositional logic (PL), we deal with propositions separated by
logical operators.

• It makes it easier to describe and manipulate concepts.

Example
The sentence in natural language

"If it is raining, then I take my umbrella" / "When it is
raining, then I take my umbrella"

can be expressed using the symbol ⇒ that denotes the implication:
It is raining ⇒ I take my umbrella

or even more concisely:
raining ⇒ umbrella.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 7/50

Propositional logic Proof systems Horn clauses Computability

Syntax: how to build a formula?

We adopt the formalism of Introduction to Artificial Intelligence.
To build formulas, we begin with smallest building blocks (atoms) and
structure them together using logical operators.

Definition
Let Op = {¬,∧,∨,⇒,⇔, (,)} be the set of logical operators and Σ a set
of symbols. The sets Op,Σ, {t, f } are pairwise disjoints. Σ is called the
signature and its elements are called propositional variables. The set of
propositional formulas is inductively (recursively) defined as follows:
• t and f are (atomic) formulas;
• all propositional variables are (atomic) formulas;
• if A and B are formulas, then ¬A, (A), A ∧ B, A ∨ B, A⇒ B, and
A⇔ B are formulas.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 8/50

Propositional logic Proof systems Horn clauses Computability

Example

Example
The expression

raining ⇒ umbrella

is a formula in PL, where {raining , umbrella} is a set of propositional
variables. The expression

(raining ∧¬ umbrella) ⇒ wet

is also a formula in PL. As en exercise, try to reformulate what it means
in natural language (several answers are possible).

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 9/50

Propositional logic Proof systems Horn clauses Computability

How to read a formula?

Definition
We read the symbols and operators in the following way:

t : "true"
f : "false"
¬A : "not A" (negation)

A ∧ B : "A and B" (conjunction)
A ∨ B : "A or B" (disjunction)
A⇒ B : "A implies B" or "if A, then B" (implication)
A⇔ B : "A if and only if B" (equivalence)

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 10/50

Propositional logic Proof systems Horn clauses Computability

Towards semantics?

• We now know how to build formulas "mechanically".
• How do we add meaning to those syntactic expressions?

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 11/50

Propositional logic Proof systems Horn clauses Computability

Semantics: how to give meaning to a formula?

• There are two truth values in PL: t for "true", f for "false".
• To know whether a formula is true or false, we give meaning to

atoms and operators.

Definition
A mapping I : Σ→ {t, f }, which assigns a truth value to every
propositional variable, is called an interpretation.

Example
To compute the truth value of the formula (rainy ∧ sunny), we need to
know the truth values of both atoms "rainy" and "sunny", and how ∧
behaves: for instance, if both "rainy" and "sunny" are both true, then
"(rainy ∧ sunny)" is true.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 12/50

Propositional logic Proof systems Horn clauses Computability

Truth tables: defining logical operators

One way to define our basic operations is to describe exhaustively their
behaviour. To this end, we range over every possible interpretation in
what is called a truth table.

Example
To define the negation ¬, we give the value of ¬A for every possible
value of A: if A is true, then ¬A is false; if A is false, then ¬A is true.

Definition

A B (A) ¬A A ∧ B A ∨ B A⇒ B A⇔ B
t t t f t t t t
t f t f f t f f
f t f t f t t f
f f f t f f t t

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 13/50

Propositional logic Proof systems Horn clauses Computability

Some vocabulary

Definition
Two formulas F and G are called equivalent if they take on the same
truth value for all interpretations. We write F ≡ G .

Example
The symbol for equivalence can be used to define operators or express
some of their properties. For instance, the symmetry, or commutativity,
of the conjunction is expressed by A ∧ B ≡ B ∧ A.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 14/50

Propositional logic Proof systems Horn clauses Computability

Some vocabulary

Definition
A formula is called
• satisfiable if it is true for at least one interpretation;
• valid if it is true for all interpretations;
• unsatisfiable if it is not true for any interpretation.

Definition
A model for a formula is an interpretation that makes the formula true.

Example
The formula "soft_grip ∧ strong_grip" is satisfiable: a model for it is
{soft_grip← t, strong_grip← t}. However, the formula "soft_grip ∧
f" is unsatisfiable.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 15/50

Propositional logic Proof systems Horn clauses Computability

Useful equivalences

A ∧ B ≡ B ∧ A symmetry (1)
A ∨ B ≡ B ∨ A symmetry (2)

A ∧ (B ∧ C) ≡ (A ∧ B) ∧ C associativity (3)
A ∨ (B ∨ C) ≡ (A ∨ B) ∨ C associativity (4)
A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C) distributivity (5)
A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C) distributivity (6)

¬¬A ≡ A (7)
¬(A ∧ B) ≡ ¬A ∨ ¬B de Morgan’s laws (8)
¬(A ∨ B) ≡ ¬A ∧ ¬B de Morgan’s laws (9)
A⇒ B ≡ ¬B ⇒ ¬A (10)
A⇒ B ≡ ¬A ∨ B implication (11)
A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A) (12)
A⊕ B ≡ ¬(A⇔ B) (13)

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 16/50

Propositional logic Proof systems Horn clauses Computability

Useful equivalences involving the constants

A ∧ f ≡ f (14)
A ∧ t ≡ A (15)
A ∨ f ≡ A (16)
A ∨ t ≡ t. (17)

These can be easily verified with a truth table.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 17/50

Propositional logic Proof systems Horn clauses Computability

Min and max

Remark that ∧ and ∨ mimic the behaviour of the functions min and max,
respectively, over the subset of the reals numbers [0, 1] and with 0 and 1
corresponding to f and t, respectively:

∀x ∈ [0, 1], min(x , 0) = 0
min(x , 1) = x

max(x , 0) = x

max(x , 1) = 1.

This is useful to remember how ∧ and ∨ behave. It is also useful in
multi-valued and fuzzy logic, where the domain of the interpretation can
be real, natural numbers, or, more generally, a partially ordered set.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 18/50

Propositional logic Proof systems Horn clauses Computability

Motivation

In AI, we are interested in taking existing knowledge and, from that,
• deriving new knowledge,
• answering queries.

Question
What does this mean in PL?

In PL, it means showing that from a knowledge base KB, i.e., a (possibly
extensive) formula in PL, a certain formula Q follows.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 19/50

Propositional logic Proof systems Horn clauses Computability

Entailment

We want to take existing knowledge from a knowledge base (KB) and
obtain new knowledge or perform queries (Q) on it.

Definition
A formula KB entails a formula Q, or Q follows from KB, if every model
of KB is also a model of Q. We write KB |= Q.

That is, in every interpretation in which KB is true, Q is also true.

Remark
Tautologies are always true, without restriction on the interpretation on
the formula. If we denote by ∅ the empty formula, we have, for a
tautology T , ∅ |= T . For short, we write |= T .

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 20/50

Propositional logic Proof systems Horn clauses Computability

Deduction theorem

This theorem allows us to link the semantic concept of entailment to the
syntactic implication ⇒.

Theorem
A |= B if and only if |= A⇒ B.

This theorem also provides a systematic way to verify whether KB |= Q:
we can demonstrate that KB ⇒ Q. The latter is easy to verify and
automatise: it suffices to build the truth table of the formula "KB ⇒ Q".

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 21/50

Propositional logic Proof systems Horn clauses Computability

A big drawback of the truth table method

If n propositional variables are involved in a formula, the corresponding
truth table will have 2n rows. In the worst case, verifying if a formula is a
tautology will require calculating every single row. The following table
gives an idea of the time needed for a naive algorithm to operate on a
formula, with the generous assumption that it can compute a row of the
truth table in a millionth of a second.

propositional variables rows time required
1 21 = 2 2× 10−3 ms
2 22 = 4 4× 10−3 ms
10 210 = 1024 1 ms
20 220 = 1048576 1 s
30 230 = 1073741824 18 minutes
40 240 = 1099511627776 2 years
50 250 = 1125899906842624 2142 years

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 22/50

Propositional logic Proof systems Horn clauses Computability

Proof by contradiction

Theorem
KB |= Q if and only if KB ∧ ¬Q is unsatisfiable.

To show that the query Q follows from the knowledge base KB, we can
add the negated query ¬Q to the knowledge base and derive a
contradiction, such as A ∧ ¬A. Since A ∧ ¬A ≡ f , a contradiction is
unsatisfiable: therefore, by the above theorem, KB |= Q has been proved.
This proof procedure is frequently used in mathematics and also used in
various automatic proof calculi such as the ones used in PROLOG.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 23/50

Propositional logic Proof systems Horn clauses Computability

Derivations and calculi

Instead of computing truth tables, we can instead manipulate formulas
syntactically, and try to simplify KB by means of inference rules so that
we can immediately conclude that KB |= Q.

Definition
This syntactic process is called derivation, and we write KB ⊢ Q.

Definition
Such syntactic proof systems are called calculi.

They are similar to the syntactical derivations we find in elementary
algebra:

(x + y)2 = x2 + 2xy + y2.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 24/50

Propositional logic Proof systems Horn clauses Computability

Soundness and completeness

Definition
• A calculus is called sound if every derived proposition follows

semantically, i.e., if KB ⊢ Q, then KB |= Q.
• A calculus is called complete if all semantic consequences can be

derived syntactically, i.e., if KB |= Q, then KB ⊢ Q.

In other words, a sound calculus does not produce "false consequences".
A complete calculus, on the other hand, ensures that the calculus does
not overlook anything, i.e., if Q follows semantically from KB, then the
calculus will find a syntactic proof for it.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 25/50

Propositional logic Proof systems Horn clauses Computability

Diagram summary

A good calculus should be both sound and complete. In such a case,
syntactic derivation and semantic entailment are two equivalent relations.
In the following diagram, Mod(A) designates the set of models for the
formula A.

KB Q

Mod(KB) Mod(Q)

⊢
derivation

|=

entailment

interpretation

interpretation

syntactic level
(formula)

semantic level
(interpretation)

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 26/50

Propositional logic Proof systems Horn clauses Computability

Modus Ponens

We give an example of an important derivation rule for PL: the modus
ponens (from Latin modus ponendo ponens, “mode where affirming
affirms”).

Definition
If A and A⇒ B are valid, we can derive B. We write it formally as:

A A⇒ B
B

MP
.

Example

rain rain⇒ wet
wet MP.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 27/50

Propositional logic Proof systems Horn clauses Computability

Resolution rule

We give an example of another important derivation rule for PL: the
resolution rule. It can be seen as a generalisation of the modus ponens:
we obtain it after setting A = f and because ¬B ∨ C ≡ B ⇒ C .

Definition
We write it formally as:

A ∨ B ¬B ∨ C
A ∨ C

Res
.

Example

sun ∨ rain ¬rain ∨ wet
sun ∨ wet Res.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 28/50

Propositional logic Proof systems Horn clauses Computability

Horn clauses: what and why

Alfred Horn circa 1973.

• Horn clauses are a special kind of formulas with big constraints on
their form.

• These constraints make it easier (faster) for automatic proof systems
to reason with and manipulate them (c.f. PROLOG).

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 29/50

Propositional logic Proof systems Horn clauses Computability

Conjunctive normal form

There can be several ways to express the same thing using a formula. To
simplify things for the purpose of, e.g., automatic proof systems, we
constraint the representations.

Definition
A formula is in conjunctive normal form (CNF) if and only if it consists of
a conjunction of clauses

K1 ∧ K2 ∧ · · · ∧ Km.

A clause Ki consists of a disjunction of literals

Li1 ∨ Li2 ∨ · · · ∨ Lini .

A literal is a variable or a negated variable.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 30/50

Propositional logic Proof systems Horn clauses Computability

"Completeness" of representations
Very nicely, the CNF does not restrict the set of formulas.

Theorem
Every PL formula can be transformed into an equivalent CNF.

Example

A ∨ B ⇒ C ∧ D

≡ ¬(A ∨ B) ∨ (C ∧ D) (implication)
≡ (¬A ∧ ¬B) ∨ (C ∧ D) (de Morgan)
≡ (¬A ∨ (C ∧ D)) ∧ (¬B ∨ (C ∧ D)) (distributivity)
≡ ((¬A ∨ C) ∧ (¬A ∨ D)) ∧ ((¬B ∨ C) ∧ (¬B ∨ D)) (distributivity)
≡ (¬A ∨ C) ∧ (¬A ∨ D) ∧ (¬B ∨ C) ∧ (¬B ∨ D) (associativity)

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 31/50

Propositional logic Proof systems Horn clauses Computability

Horn clauses

Horn clauses are a special kind of formulas which are very useful in
formal reasoning and proof systems.

Definition
Clauses with at most one positive literal, i.e., of the forms

(¬A1 ∨ · · · ∨ ¬Am ∨ B) or (¬A1 ∨ · · · ∨ ¬Am) or B

or, equivalently, of the forms

A1 ∧ · · · ∧ Am ⇒ B or A1 ∧ · · · ∧ Am ⇒ f or B

are named Horn clauses, after their inventor. A clause with a single
positive literal is a fact. In clauses with negative and one positive literal,
the positive literal (here, B) is called the head.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 32/50

Propositional logic Proof systems Horn clauses Computability

Example

To motivate the use of Horn clauses in modelling and reasoning, consider
the following knowledge base that describes the behaviour of a robot
trying to grab a can of soda on a table:

KB = {oiled , (the robot is well-oiled)
can_reach, (the robot is close enough to reach the can)
oiled ⇒ can_move, (if the robot is well-oiled then it can move)
can_reach ∧ can_move ⇒ can_grab}.

Note that KB can be seen as set of propositions; to recover a singular
formula, we may simply use the conjunction of all the propositions in the
set. We want to know whether the robot can grab the soda can, query
which we may write as

can_grab?

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 33/50

Propositional logic Proof systems Horn clauses Computability

Example: derivation
To prove that can_grab holds, we can use the following generalised
modus ponens rule:

A1 ∧ · · · ∧ Am A1 ∧ · · · ∧ Am ⇒ B

B
MPm.

The derivation for can_grab can be written as follows. We first derive
can_move from oiled and oiled ⇒ can_move :

oiled oiled ⇒ can_move
can_move MP.

The proposition can_move has thus been added to our knowledge base.
Then, we can apply again the generalised modus ponens and the last
proposition in the knowledge base:

can_reach ∧ can_move can_reach ∧ can_move ⇒ can_grab

can_grab
MPm.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 34/50

Propositional logic Proof systems Horn clauses Computability

Drawback of modus ponens

Modus ponens is easy to apply and yields a complete (and sound)
calculus for Horn clauses. However, when the knowledge base is large, it
can derive many useless formulas if one begins with the wrong clauses.
Instead of starting with facts and deriving to the query (forward
chaining), we can instead start with the query and work backwards until
the facts are reached (backward chaining).
SLD is a method to perform backward chaining on Horn clauses in
particular.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 35/50

Propositional logic Proof systems Horn clauses Computability

SLD

Definition
A definite clause is a particular kind of Horn clause that contains a single
positive literal, i.e., of the forms

(¬A1 ∨ · · · ∨ ¬Am ∨ Q) or Q.

Definition
SLD stands for Selection rule driven Linear resolution for Definite clauses.

To perform SLD, given a query Q?, we add a negated query such as
Q ⇒ f and try to derive a contradiction.
In PROLOG, programs consist in predicate logic Horn clauses, which are
processed using SLD.
The search space is greatly reduced because less formulas are explored.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 36/50

Propositional logic Proof systems Horn clauses Computability

Example: derivation I

Let us go back to our robot trying to grab a can of soda. The knowledge
base is still

KB = {oiled ,
can_reach,

oiled ⇒ can_move,

can_reach ∧ can_move ⇒ can_grab,

can_grab ⇒ f },

augmented with the query can_grab ⇒ f . The derivation can be written
as follows.

can_grab ⇒ f can_reach ∧ can_move ⇒ can_grab

can_reach ∧ can_move ⇒ f .

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 37/50

Propositional logic Proof systems Horn clauses Computability

Example: derivation II
Also,

can_reach ∧ can_move ⇒ f can_reach

can_move ⇒ f ,

and
can_move ⇒ f oiled

oiled ⇒ f ,

but
oiled ⇒ f oiled

()

with () denoting the empty clause, i.e., a contradiction:

(oiled ⇒ f) ∧ oiled ≡ (¬oiled ∨ f) ∧ oiled

≡ (¬oiled ∧ oiled) ∨ (f ∧ oiled)

≡ (¬oiled ∧ oiled) ∨ f

≡ (¬oiled ∧ oiled).

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 38/50

Propositional logic Proof systems Horn clauses Computability

Computability and complexity

This section contains a (very!) short introduction to computability and
complexity.
What you should remember from this section is summarized in slide 49.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 39/50

Propositional logic Proof systems Horn clauses Computability

Two big questions

In AI and robotics in particular, we are confronted to a lot of problems
we, or the robot, might want an answer to, and fast.

Can I grab this can of coke?
Is it the can of coke that I needed?
What’s the fastest way to get to the can of coke?
Am I alive?

Computability: is a problem decidable?
Is it even possible to get a solution?

(Computational) complexity

If we can get a solution, how difficult/costly is it to get it?

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 40/50

Propositional logic Proof systems Horn clauses Computability

Turing machines: introduction

Alan Turing circa 1938.

Turing machines (TM) are an
abstract but quite simple model of computation,
introduced by Alan Turing in 1936 in his paper
On Computable Numbers, with an Application
to the Entscheidungsproblem. They provide
a powerful model of computation: we have
yet to find a problem that cannot be tackled
by a TM (provided the problem can be solved).
They also provide a strong mathematical
basis for many computer science concepts.
Their simplicity allows researchers to precisely
define, for instance, the cost of a certain
computation/program. Just like for computers,
the cost in time will be the number of steps a
certain TM needs to perform a certain task, and
the cost in space will be the amount of "memory" the machine requires.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 41/50

Propositional logic Proof systems Horn clauses Computability

Turing Machines: informal description

· · ·

· · ·

x α z x y 1

a 0 1 b

Control unit
state qi

A TM in its simplest form is comprised of a workspace (a tape, infinite to
the right and to the left), a head (moves along the tape, and can
read/modify it), and internal states qi (in which the TM can be). The
machine works as follows:

1. read what is written on the tape under the head,
2. change internal state accordingly,
3. perform an action according to this new state,
4. repeat.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 42/50

Propositional logic Proof systems Horn clauses Computability

Church-Turing thesis I

Alonzo Church.

Paraphrased:
Anything that can be computed by human means can be

computed by a TM.

• This includes doing a division by hand, performing an addition with
an abacus, but also playing chess, calculators, and computers!

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 43/50

Propositional logic Proof systems Horn clauses Computability

Church-Turing thesis II
• There exist other models of computations, such as circuits, rewriting

systems, programming languages, λ-calculus, etc., but they are not
more powerful than TMs: there are no problems that they can
compute that cannot be computed by a TM.

• Note that the thesis is not a theorem: it identifies an informally and
intuitively defined class of problems with a mathematically defined
class.

• This identification is generous. No limit is placed on computation
time, memory, etc., so if Church’s thesis is right, and if we prove that
something cannot be computed by a TM, allowing more memory or
a longer computation time will not change the conclusion.

• The equivalences between different models of computation and the
simplicity of TMs motivates the conception of computation being
seen as simple symbol manipulation, be it in a computer, or in the
(animal) brain. It makes it reasonable to abstract from differences
between circuits, silicon chips, symbols, neurons..., despite their
differences.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 44/50

Propositional logic Proof systems Horn clauses Computability

Uncomputability

Turing machines split the space of problems in two:
• problems they can solve (computable problems),
• problems they cannot (uncomputable problems).

Some uncomputable problems have a deceptively simple description, just
as some arithmetic problems can be easily described but extremely hard
to prove. They are mathematically well defined, but cannot be solved by
a TM.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 45/50

Propositional logic Proof systems Horn clauses Computability

Halting problem

The following problem is uncomputable.

Example
Does a certain TM halt on a certain input?

Sometimes, it is easy to see whether a program (or a TM) will stop or
loop forever on a certain input:

input = True
while(input):

print "oops"

Such a Halting problem-solving machine would be tremendously useful,
for engineers to check whether their airplane software will loop, for
instance. Unfortunately, this problem is also uncomputable.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 46/50

Propositional logic Proof systems Horn clauses Computability

A little asymptotic complexity...
The consumption of memory or size of programs, machines, etc. can
often be modelled by a function.

Question
How to compare the growth of two functions?

0 1 2 3 4 5 6
0

5

10

15

20

25
constant
linear

quadratic

0 1 2 3 4 5 6
0

20

40

60

80

100
quadratic

exponential

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 47/50

Propositional logic Proof systems Horn clauses Computability

Polynomial time

In order to measure the complexity of a process, of a program, of an
algorithm, etc., we can evaluate the time it takes to run. Thanks to
TMs, all we need is to count the number of actions it makes until it stops
after having written the result on its tape.

Definition
P is the set of problems that can be solved in polynomial time.

Example

• GCD (Greatest Common Divisor) is in P: Euclid’s algorithm runs in
quadratic time.

• PRIME ("Is a certain integer a prime number?") is in P.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 48/50

Propositional logic Proof systems Horn clauses Computability

NP

Definition
NP is the set of problems for which we can verify a solution in polynomial
time.

Example
SAT, the problem that takes as input a formula in PL and returns t if the
formula is satisfiable, is in NP (Cook-Levin 1973). Here, a solution is a
model: to verify if the model indeed satisfies the formula takes a
polynomial amount of time.

P versus NP
We know that P ⊆ NP, but knowing whether P = NP is still an open
problem. The standard opinion is that P ̸= NP and that it is a very
complicated problem to solve, but opinions diverge on how to approach it.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 49/50

Propositional logic Proof systems Horn clauses Computability

What does it mean for us?

• The truth table method can determine every model of any formula
in finite time: thus, the sets of unsatisfiable, satisfiable, valid
formulas are computable.

• However, the computation time of the truth table grows
exponentially in the number of variables of the formula.

• Are there better algorithms?
• Probably not (except if P=NP!): 3-SAT, the set of all (satisfiable)

CNF formulas whose clauses have exactly three literals, is
NP-complete (Cook-Levin theorem): is amongst the most difficult
problems of NP.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 50/50

Propositional logic Proof systems Horn clauses Computability

Next week...

• PL is employed in simple AI applications, but modelling real
situations quickly requires a large number of propositional variables.

• We will be looking at first-order logic (FOL), which allows us to
describe more complex and precise logical connections by adding
onto the syntax and semantics of PL.

• We will do sensibly the same thing: define syntax, semantics, and
how to perform inference in a FOL system.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 1/32

FOL: syntax FOL: semantics FOL in practice Decidability

RO47014 - Week 2: First-Order logic
Course

Pierre Mercuriali
Responsible instructor: Carlos Hernandez Corbato

Spring 2022

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 2/32

FOL: syntax FOL: semantics FOL in practice Decidability

From propositional logic to first-order logic

Consider the following sentence that describes a situation a robot is in.
"The robot 4 is at position (32, 10)."

In propositional logic, one could model this situation using the
propositional variable

robot_4_at_position_32_10.

However, only 10 robots in a 100x100 grid would already require
10 × 100 × 100 = 105 different variables to capture all the different
positions!

Relations between objects are also costly to represent:
"The robot A is to the right of the robot B"

would require painstakingly entering, in our knowledge base, all the pairs
of coordinates that verify the condition!

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 3/32

FOL: syntax FOL: semantics FOL in practice Decidability

The power of first-order logic

• Universal knowledge and rules can be expressed very compactly
thanks to variables and functions. In the preceding example, one can
thus very easily access the position of robot #4 using a function
symbol: position(robot4). Thus there is no need to introduce a new
symbol for every possible position.

• It is also possible to express relations between objects:
is_to_the_right(robot1, robot2) and to define these relations:

∀r1 ∀r2 is_to_the_right(r1, r2) ⇔
∃xr1 ∃yr1 ∃xr2 ∃yr2
position(r1, xr1, yr1) ∧ position(r2, xr2, yr2) ∧ xr1 > xr2,

which can be read as:
"For all r1 and r2, r1 is to the right of r2 if and only if there

exist (xr1, yr1) and (xr2, yr2) such that r1 is at (xr1, yr1), r2 is at
(xr2, yr2), and xr1 > xr2."

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 4/32

FOL: syntax FOL: semantics FOL in practice Decidability

First-order logic: overview

FOL: syntax

FOL: semantics

FOL in practice: Logical reasoning

Decidability

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 5/32

FOL: syntax FOL: semantics FOL in practice Decidability

How to write a term?

In order to build FOL formulas, we need to formalise the notion of term,
as it is one of the building blocks of our formulas.

Definition (Terms)

Let V be a set of variables, K a set of constants, F a set of function
symbols. V ,K ,F are pairwise disjoints. The set of terms is defined
recursively as follows:

• All variables and constants are (atomic) terms.
• If t1, . . . , tn are terms and f is an n-place (n-ary) function symbol,

then f (t1, . . . , tn) is also a term.

Example
f (cos(π2)), f (g(x)), battery_state(Robot1), are terms.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 6/32

FOL: syntax FOL: semantics FOL in practice Decidability

Predicate logic formulas
Definition
Let P be a set of predicate symbols. Predicate logic formulas are built as
follows:

• If t1, . . . , tn are terms and p an n-place predicate, then p(t1, . . . , tn)
is an (atomic) formula.

• If A,B are formulas, then ¬A, (A),A ∧ B,A ∨ B,A ⇒ B,A ⇔ B are
formulas.

• If x is a variable and A is a formula, then ∀x A and ∃x A are
formulas. ∀ and ∃ are known as the universal and existential
quantifiers, respectively.

• p(t1, . . . , tn) and ¬p(t1, . . . , tn) are called literals.

FOL is extensively used in mathematics. It is a powerful and concise
language to express properties and properly and unambiguously define
objects, as in:

∀n prime(n) ⇔ (∀m divides(m, n) ⇒ (equals(m, n) ∨ equals(m, 1))).

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 7/32

FOL: syntax FOL: semantics FOL in practice Decidability

FOL formulas

Definition
Formulas in which every variable is in the scope of a quantifier are called
first-order sentences or closed formulas. Variables which are not in the
scope of a quantifier are called free variables.

Example (Scope)

The following formula is not closed:

p(x) ⇒ ∀y f (x , y).

Indeed, x is a free variable: it is not preceded by a quantifier or, in other
words, it is not in the scope of a quantifier. However, y is a bound
variable, quantified by ∀y .

Remark
CNFs and Horn clauses are defined similarly as they are in PL.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 8/32

FOL: syntax FOL: semantics FOL in practice Decidability

Examples

likes(x , y) is to be read as: "x likes y".

Formula Description
∀x frog(x) ⇒ green(x) All frogs are green
∀x (frog(x) ∧ brown(x)) ⇒ big(x) All brown frogs are big
∃x frog(x) There exists a frog
∀x likes(x , cake) Everyone likes cake
∃x likes(x , cake) Someone likes cake
¬(∀x likes(x , cake)) Not everyone likes cake
∃x ¬(likes(x , cake)) Someone does not like cake
¬(∃x likes(x , cake)) There isn’t someone who likes cake/

No one likes cake
∀x ¬likes(x , cake) Everyone dislikes cake

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 9/32

FOL: syntax FOL: semantics FOL in practice Decidability

Examples

• Be aware that likes is not necessarily symmetric: likes(x , y) is
different from likes(y , x)!

• older(x , y) is to be read as: "x is older than y".
• Note that mother is a function symbol here: mother(Susan) refers

to "Susans’s mother".

Formula Description
∃x ∀y likes(x, y) There is someone who likes everything
∃y ∀x likes(x, y) There is something that everyone likes
∀x robot(x) ⇒ likes(Susan, x) Susan likes every robot
∃x robot(x) ∧ likes(Susan, x) There is a robot whom Susan likes
∃x robotician(x) ∧ (∀y robot(y) ⇒ likes(x, y)) There is a robotician who likes every robot
∀x older(mother(x), x) Every mother is older than their child
∀x older(mother(mother(x)), x) Every grandmother is older than their child’s child
∀x ∀y ∀z Rel(x, y) ∧ Rel(y , z) ⇒ Rel(x, z) Rel is a transitive relation

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 10/32

FOL: syntax FOL: semantics FOL in practice Decidability

Notation
• It can be particularly useful to indicate the number of places (the

arity) of a function or predicate symbol explicitly.
• In Prolog in particular, which we will be using, the arity is sometimes

written right after the predicate:

stop/1,
older/2,
remove/2.

Example
In this example, the predicate looking is used both in its intransitive form
(as in, "I am looking") and in its transitive form (as in, "I am looking at
something"). The difference lies the arity of the predicate.

Symbol(s) Formula Description
looking/1 looking(robot1) The robot 1 is looking.
can/1, looking/2 ∃x can(x) ∧ looking(robot1, x) The robot 1 is looking at a can.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 11/32

FOL: syntax FOL: semantics FOL in practice Decidability

Interpretations
• Recall that in PL, every variable is assigned a truth value by an

interpretation.
• In FOL, we also interpret, starting with the building blocks of the

FOL formulas: we map constants and variables to a set of names of
objects in the world. Function symbols and predicate symbols are
mapped to the set of functions and predicates in the world,
respectively. The meaning of the formula is then recursively defined
over the construction of the formula.

Definition
An interpretation I of a formula F is defined as a couple (∆I, ·I), where
∆I is a non-empty set, called the domain of interpretation, and ·I is an
interpretation function, that maps:
• a constant c in F to a constant c I ∈ ∆I;
• a n-place function symbol ϕ in F to a n-ary function ϕI : ∆n

I → ∆I;
• a n-place predicate symbol p in F to a n-ary relation pI on ∆I, that

is, p is a subset of ∆n
I , that we can consider as a function

pI : ∆n
I 7→ {f , t}.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 12/32

FOL: syntax FOL: semantics FOL in practice Decidability

Interpretations: more on relations

"(x1, . . . , xn) are in relation through pI" is denoted either by

(x1, . . . , xn) ∈ pI or by pI(x1, . . . , xn).

Example
Consider the binary (2-place) relation likes, interpreted over the domain
∆I = {Milton, Joe,Charity}. Then, likesI is a subset of ∆2

I , i.e., a subset
of {(Milton,Milton), (Milton, Joe), (Milton,Charity), (Joe,Milton),
(Joe, Joe), (Joe,Charity), (Charity ,Milton), (Charity , Joe),
(Charity ,Charity)}; for instance, we may decide that
likesI = {(Milton,Charity), (Milton, Joe), (Joe,Charity)} to express the
fact that Milton likes Charity, that Milton likes Joe, and that Joe likes
Charity.

(For more information on Milton, Joe, and Charity, read Asimov’s short
story: "True Love").

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 13/32

FOL: syntax FOL: semantics FOL in practice Decidability

Interpretation of a quantifierless formula

Example
Let c1, c2, c3 be constants, plus a 2-place function symbol, and greater a
2-place predicate symbol. We will figure out the truth of the formula

F ≡ greater(plus(c1, c3), c2),

given two different interpretations I1 and I2.
First, consider the interpretation (∆I1 , ·I1) where ∆I1 = {1, 2, 3, 4, 5} and
where ·I1 verifies:

I1 : c1 7→ 1, c2 7→ 2, c3 7→ 3, plus 7→ +, greater 7→> .

Once interpreted, the formula is mapped to 1 + 3 > 2 or, once evaluated,
4 > 2. > is a binary relation and, over ∆I1 = {1, 2, 3, 4, 5}, > is the set
{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (5, 4)}.
Thus, since (4, 2) ∈>, F is true under the interpretation I1.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 14/32

FOL: syntax FOL: semantics FOL in practice Decidability

Interpretation of a quantifierless formula

Example
Second, under the following interpretation I2, the formula

F ≡ greater(plus(c1, c3), c2),

is false: here, ∆I1 = {1, 2, 3, 4, 5} also, but ·I2 verifies:

I2 : c1 7→ 2, c2 7→ 3, c3 7→ 1, plus 7→ −, greater 7→> .

Once interpreted, the formula is mapped to 2 − 1 > 3 or, once evaluated,
1 > 3. Since (1, 3) ̸∈>, F is false under the interpretation I2.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 15/32

FOL: syntax FOL: semantics FOL in practice Decidability

Truth of a formula
Let us formalise what we have done in the previous examples.

Definition (Truth value of a predicate)

• An atomic formula p(t1, . . . , tn) is true (or valid) under the
interpretation I if, after interpretation and evaluation of all terms
t1, . . . , tn and interpretation of the predicate p through the n-place
relation pI, it holds that

(tI1, . . . , t
I
n) ∈ pI.

• The truth of quantifierless formulas follows from the truth of atomic
formulas, as in propositional calculus, through the semantics of the
logical operators ¬,∧,∨,⇒,⇔ defined in week 1.

Remark
You might also find the functional notation I(t) for tI.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 16/32

FOL: syntax FOL: semantics FOL in practice Decidability

Quantifiers

Definition
• A formula ∀x F is true under the interpretation I exactly when it is

true given an arbitrary change of the interpretation for the variable
x , and only for x ;

• a formula ∃x F is true under the interpretation I exactly when there
is an interpretation for x that makes the formula true.

In other words,
• ∀x F is interpreted as "for all x ∈ ∆I,F", and
• ∃x F is interpreted as "there exists x ∈ ∆I such that F".

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 17/32

FOL: syntax FOL: semantics FOL in practice Decidability

Interpretation of a quantified formula

Example
Consider the following formula:

∀x ∀y p(a, x) ∧ p(x , y) ⇒ p(a, y).

1. Under the interpretation ∆I = every human being, aI = me, and
pI(x , y) = "y is a friend of x", the formula can be understood as

"The friends of my friends are my friends".

2. Under the interpretation ∆I = N, aI = 5, and pI(x , y) = (x ≤ y),
the formula is interpreted as

"For all x and for all y , if x ≥ 5 and y ≥ x , then y ≥ 5"

which it true, because of the transitivity of ≥.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 18/32

FOL: syntax FOL: semantics FOL in practice Decidability

Satisfiability
The definitions of semantic equivalence of formulas, satisfiability, validity,
unsatisfiability, model, and semantic entailment, are the same as in PL.
For instance,

Definition
Let F be a formula in FOL and I an interpretation of F . I is a model of
F , which we denote by I |= F , if F is true in this interpretation.

Example
With the formula from the previous example, consider the interpretation
∆I = N, aI = 5, and pI(x , y) = (x = y + 1), the formula is interpreted as

"For all x and for all y , if 5 = x + 1 and x = y + 1, then
5 = y + 1".

Then, I ̸|= F , because of the counter-example 5 = 4 + 1 and 4 = 3 + 1,
but 5 ̸= 3 + 1.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 19/32

FOL: syntax FOL: semantics FOL in practice Decidability

Useful equivalences
Given a formula of FOL F (either closed or open),

¬∀x ¬F ≡ ∃x F (1)
¬∀x F ≡ ∃x ¬F (2)
¬∃x F ≡ ∀x ¬F (3)
∀x ∀y ≡ ∀y ∀x (4)
∃x ∃y ≡ ∃y ∃x (5)

Example

Formula Description
¬(∀x likes(x , cake)) Not everyone likes cake
∃x ¬(likes(x , cake)) Someone does not like cake
¬(∃x likes(x , cake)) There isn’t someone who likes cake
∀x ¬likes(x , cake) Everyone dislikes cake

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 20/32

FOL: syntax FOL: semantics FOL in practice Decidability

Be careful with the order of alternating quantifiers!

Compare the following two formulas:
• ∀x ∃y needs(x , y), that can be understood as

"Everybody needs somebody";

• ∃x ∀y needs(x , y), that can be understood as
"There is someone who needs everyone".

When dealing with alternating quantifiers (∃x ∀y ∃z . . . the order in
which they are understood is very important, order which we can make
clearer using parentheses:

• ∀x (∃y needs(x , y)),
• ∃x (∀y needs(x , y)).

(For more information regarding the first sentence, refer to Everybody
Needs Somebody by the Blues Brothers).

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 21/32

FOL: syntax FOL: semantics FOL in practice Decidability

Equality

• Recall that we defined atomic formulas as p(t1, . . . , tn) with p an
n-place predicate, and t1, . . . , tn terms.

• In FOL, we can also use the equality symbol to indicate that two
terms refer to the same object. It can be seen as a predicate
equals/2, and written with the simple equality symbol: =.

• The predicate equals/2 is the set of all pairs of objects in which
both elements of the pair are the same object.

Example
The formula

inventor(lambda_calculus) = Alonzo_Church

expresses that the inventor of λ-calculus and Alonzo Church are the same.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 22/32

FOL: syntax FOL: semantics FOL in practice Decidability

Logical reasoning in FOL

• In PL, we have seen some ways to reason with formulas using proof
calculi: we can derive new knowledge from a knowledge base using
inference rules such as the Modus Ponens and the Resolution rule.

• With the introduction of variables and quantification, it becomes
much more complex to reason like that, and we need new ways to
manipulate formulas, such as rules to eliminate quantifiers.

Question
What are some concrete issues that automatic theorem provers, that is,
implementation of proof calculi, have to tackle to reason with knowledge
bases?

Question
How do automatic theorem provers deal with these issues?

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 23/32

FOL: syntax FOL: semantics FOL in practice Decidability

Variable substitution

Consider the following knowledge base

KB = {∀x type(x ,Bowl) ⇒ type(x ,Container), (6)
type(Bowl01,Bowl)} (7)

that contains a rule that states that every object of type bowl is also an
object of type container, as well as a fact that assigns the entity Bowl01
to the type Bowl .

Question
How to prove that

type(Bowl01,Container)

also holds?

(Perhaps straightforward for us, but not so much for a machine!)

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 24/32

FOL: syntax FOL: semantics FOL in practice Decidability

Variable substitution: Herbrand universe

Definition (Substitution)

Let x be a (free) variable, X a symbol, and Φ a sentence in FOL.
Assigning symbol X to the variable x in the sentence Φ is called a
substitution, and is written as Φ[x/X].

The reasoning problem in FOL can be phrased as a search problem in the
space of possible variable substitutions, which is called the Herbrand
universe. Here, consider the substitution [x/Bowl01] in sentence (6) in
the preceding slide.

(type(x ,Bowl) ⇒ type(x ,Container))[x/Bowl01]
≡ type(Bowl01,Bowl) ⇒ type(Bowl01,Container)
≡¬ type(Bowl01,Bowl) ∨ type(Bowl01,Container),

which is satisfied if and only if type(Bowl01,Container) holds.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 25/32

FOL: syntax FOL: semantics FOL in practice Decidability

Propositionalization

Eliminating variables by substitution through constant or function
symbols is called propositionalization: a sentence whose variables have
been substituted corresponds to an expression in PL.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 26/32

FOL: syntax FOL: semantics FOL in practice Decidability

Resolution

• Resolution calculus is historically the first automatized calculus, as
well as the most important efficient calculus for formulas in CNF.

• It works much the same as in the propositional case: one adds a
negated query to the knowledge base, and tries to reach a
contradiction.

• It is motivated by results from the 70s on correctness and
completeness which makes it a natural candidate for reasoning tasks
in AI, together with the power of predicate logic.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 27/32

FOL: syntax FOL: semantics FOL in practice Decidability

Example of resolution
Consider the following knowledge base, that expresses that everyone
knows their own mother.

KB = ∀x knows(x ,mother(x)).

We now ask whether Henry knows anyone, i.e., whether

∃y knows(henry , y).

We thus want to derive a contradiction from

knows(x ,mother(x)) ∧ ¬knows(henry , y).

This is obtained by the following substitutions:
{[x/henry], [y/mother(henry)]}, as we obtain the following contradiction:

knows(henry ,mother(henry)) ∧ ¬knows(henry ,mother(henry))

from which we can derive the empty clause using a resolution step.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 28/32

FOL: syntax FOL: semantics FOL in practice Decidability

Unification

Definition (Unification)

Two literals are called unifiable if there is a substitution σ for all variables
which makes the literals equal, called the unifier. A unifier is called the
most general unifier (MGU) if all other unifiers can be obtained from it
by substitution of variables.

The substitution step in the previous slide was a unification:

knows(x ,mother(x)) knows(henry , y)

{[x/henry], [y/mother(henry)]}

knows(henry ,mother(henry))

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 29/32

FOL: syntax FOL: semantics FOL in practice Decidability

Examples of unification

In this slide, a, b refer to constant symbols, x , y to variable symbols, and
f , g to function symbols.

Expression Unifying substitution Explanation
a = a any all (tautology)
a = b none a and b do not match
x = x any all (tautology)
a = x [x/a] x is unified with the constant a
f (a) = g(a) none f and g do not match
f (x) = f (y) [x/y] x is unified with y
f (g(x)) = f (y) [y/g(x)] unifies y with the term g(x)
x = y , y = a [x/a], [y/a] unifies x and y with a

There exist several unification algorithms, the first of which was
discovered by J. Herbrand.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 30/32

FOL: syntax FOL: semantics FOL in practice Decidability

Motivation for resolution

• With only a resolution rule and a factorization, both of which work
by unification, the empty clause can be derived from any
unsatisfiable formula in CNF.

• Therefore, if they can, queries can be answered by a theorem prover
(and we get the proof!)

• However, the immense combinatorial search space makes it a costly
problem.

• Some strategies attempt to tackle the problem of reducing the
search space, such as applying rules to small literals first, or forcing
a clause from KB ∧ ¬Q to appear in all steps of the derivation (at
the cost of completeness).

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 31/32

FOL: syntax FOL: semantics FOL in practice Decidability

Decidability of PL

Theorem
All true entailments can be found. All false entailments can be refuted.
(Truth table method)

Question
But what about FOL? We cannot use the truth table method!

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 32/32

FOL: syntax FOL: semantics FOL in practice Decidability

Semi-decidability: towards description logics

• FOL is semi-decidable (Turing, Church, 1936), i.e., for every FOL
formula F , the test |= F (or ⊢ F) is semi-decidable.

• In other words, there exists an algorithm that takes a formula in
FOL F as input, and behaves thusly:

• If ⊢ F , then the algorithm returns true;
• Otherwise, either the algorithm returns false, or it never stops.

• There is no algorithm that will systematically decide whether |= F in
finite time: i.e., this test is undecidable.

• Usually, a robot only takes a decision after its reasoning tasks have
been completed. It’s better to do the reasoning in finite time!

For this reason, we define formalisms that are equivalent to decidable
fragments of FOL, namely, Prolog, and description logics.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 1/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

RO47014 - Week 3: Description logics
Course

Pierre Mercuriali
Responsible instructor: Carlos Hernandez Corbato

Spring 2022

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 2/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Description logics

We have seen two ways of modelling the real world.
• PL, which powerful but quickly gets unsuitable for robotics tasks;
• FOL, which is much more powerful and descriptive but quickly gets

too complicated for reasoning.
Can we get the best of both worlds?

Description logics (DLs) are knowledge representation languages,
developed since the 80s, and used a lot in knowledge representation, such
as bioinformatics, where it assists in the handling of biomedical
knowledge.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 3/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Description logics: overview

PL and FOL: Recap

ALC : syntax

ALC : semantics

Towards OWL

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 4/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Propositional logic: syntax

In PL, our building blocks are propositional variables, that we combine
using logical operators.
• Set of symbols Σ (propositional variables)
• Logical connectives: Op = {¬,∧,∨,⇒,⇔, (,)}
• Two special symbols: {t, f }
• Op,Σ, {t, f } are pairwise disjoint.

Definition (Set of propositional formulas)

• t and f are formulas;
• all propositional variables are formulas;
• if A and B are formulas, then ¬A, (A), A ∧ B, A ∨ B, A ⇒ B, and
A ⇔ B are formulas.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 5/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Propositional logic: semantics
To give meaning to formula, we interpret them. Is a certain formula true
or false?

• An interpretation is a mapping Σ → {t, f }.
• The truth value of a formula is computed recursively using the

semantic definition of the operators, given by a truth table:
A B (A) ¬A A ∧ B A ∨ B A ⇒ B A ⇔ B
t t t f t t t t
t f t f f t f f
f t f t f t t f
f f f t f f t t

Definition
A formula is called

• satisfiable if it is true for at least one interpretation, then called a
model;

• valid if it is true for all interpretations;
• unsatisfiable if it is not true for any interpretation.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 6/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Propositional logic: reasoning

• Computation rules: Modus Ponens, Resolution rule.
• There are sound and complete calculi!

In the figure: Mod(A) is the set of models for the formula A.

KB Q

Mod(KB) Mod(Q)

⊢
derivation

|=

entailment

interpretation

interpretation

syntactic level
(formula)

semantic level
(interpretation)

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 7/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Decidability: PL vs FOL

• In PL: decidability
All true entailments can be found, all false entailments can

be refuted (truth table method).

• In FOL: semi-decidability
There is an algorithm that finds true entailments, but might

not stop searching for a refutation for a false entailment.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 8/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

First-order logic: syntax

In first-order logic, we have more building blocks than in propositional
logic:

• Operators: same as in PL
• Quantifiers: universal (∀x), existential (∃x)
• Variables: x , y , z , etc.
• Constants: Container ,Bowl

• Function symbols (access properties): location, x_coordinate

• Predicates (return true or false): robot, is_to_the_left_of , drone

Example
"Every robot knows someone who likes it":

∀x ∃y (robot(x) ⇒ (knows(x , y) ∧ likes(y , x))

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 9/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

First-order logic: syntax (terms and formulas)

Definition (Terms)

• Variables and constants are terms;
• f (t1, . . . , tn) is a term, with f a function symbol, ti terms.

Definition (FOL (predicate) formulas)

• p(t1, . . . , tn) is a formula, with p a predicate symbol, ti terms;
• ∀x A and ∃x A are formulas, with A a formula, x a variable;
• ¬A, (A), A ∧ B, A ∨ B, A ⇒ B, and A ⇔ B are formulas, with A, B

formulas (just like in PL).

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 10/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

First-order logic: semantics

• An interpretation I is a couple (∆I, ·I);
• ∆I is the domain of interpretation (integers, real numbers, sets of

people, all the objects in the world, etc.), ·I the interpretation
function:

• a constant symbol c is interpreted as a constant c I in ∆I;
• a n-place function symbol f is interpreted as a n-ary function

f I : ∆n
I → ∆I;

• a n-place predicate symbol p is interpreted as a n-ary relation, and
can be considered as a function pI : ∆n

I → {t, f }.
• A formula p(t1, . . . , tn) is true under the interpretation I if it holds

that pI(tI1, . . . , t
I
n) = t.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 11/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

First-order logic: interpretations

Example
Consider the formula F = ∀x ∀y p(x , y) ⇒ p(y , x).

1. • ∆I1 = N
• pI1 == (the "equality" over natural numbers)

The formula is understood as

∀x , y ∈ N, x = y ⇒ y = x .

Then, I1 |= F .
2. • ∆I2 = the set of all humans in Shakespeare’s plays

• pI2 = loves/2
The formula is understood as

"if an individual loves another, then the latter also loves the
former".

Then, I2 ̸|= F (counter-example: Helena loves Bertram in All’s Well
That Ends Well, but Bertram does not love her back).

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 12/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Why description logics? Towards ALC

Pro(s) of FOL

• High expressivity

Cons of FOL
• Proofs are very complex (semi-decidability)
• It can be difficult to find a consensus for representations (many ways

to describe the same thing)

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 13/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Between PL and FOL

One solution is a compromise between expressivity and scalability:

fragments of FOL.

• More expressive than PL,
• Yet simple enough to allow decidable reasoning!

First, we will consider a simple DL called ALC .
Then, we will progressively add more expressiveness to reach OWL.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 14/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Description logic vocabulary

Question
What are our building blocks? What do we manipulate?

Here, it is convenient to consider right now a certain interpretation, I.
• Concepts: a concept C is interpreted as a set CI of things we want to

model (the set of all natural numbers, a set of robots, a set of soup
cans... c.f. FOL);

• Roles: a role r is interpreted as a binary relation rI (notice here that
we are only concerned with binary relations; compare with FOL!);

• Instances: an instance a is interpreted as an individual aI in the real
world.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 15/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Example of DL concepts
Example

• the concept of Robot, interpreted as the set of all robots;
• the role hasComponent, used to indicate that a certain robot has a

certain other component, thereby linking instances together;
• the instance spot1 for the specific SpotMini robot that was used in

Boston Dynamic’s 2018 youtube video, a photo of which is given
here.

Figure 1: Source : Wikipedia

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 16/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Set theory

Once interpreted, concepts correspond to sets; naturally, naive set theory
connectives such as ∩,∪, etc. are available in ALC with the connectives
⊓,⊔, etc.:

(C ⊔ D)I = CI ∪ DI.

Example
The concept of blue robots, at the "intersection" of the concept of blue
things and the concept of robots:

Blue ⊓ Robot.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 17/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Knowledge base in ALC
Here is an example of a knowledge base in ALC . The symbols will be
properly defined in the following slides.

Tbox ("terminology box")

Terminological knowledge: knowledge about the concepts of a domain
Robot ⊑ ArtificialConstruct (a robot is an artificial construct)
Skillet ⊑ CookingVessel (a skillet is a cooking vessel)
Hagelslag ≡ SweetFood ⊓ ∃ingredient.Chocolate ⊓ Small
(hagelslag is exactly a sweet, small food made of chocolate)

ABox ("assertion box")

Assertional knowledge: knowledge about individuals or entities
Hagelslag(hagelslag1) (whatever is referred to by hagelslag1 is a
hagelslag)
hasIngredient(chocolate1,hagelslag1) (what is referred to by
hagelslag1 contains what is being referred to by chocolate1)

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 18/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Syntax of ALC

ALC
Attributive (Concept) Language with Complements

Like in PL and FOL, we start with the building blocks (concepts/classes,
roles, and instances) and combine them to make more complex formulas.

We also have two special concepts:
• ⊤, read as "top": the universal concept, the most general concept;
• ⊥, read as "bottom": the bottom concept, the unsatisfiable

concept, also called the most specific concept.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 19/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Syntax (and intuitive semantics) of ALC
The ALC concepts are syntactically defined as follow, with C, D two
concepts, and r a role.

• ⊤ and ⊥ are concepts.
• An atomic concept, that is, a concept name, is a concept.
• C ⊓ D is the conjunction of the two concepts C and D, and represents

the set of individuals that are in C, AND in D.
• C ⊔ D is the disjunction of the two concepts C and D, and represents

the set of individuals that are in C, OR in D.
• ¬C is called the complementary of C and represents the set of

individuals that are NOT in C.
• ∃r.C corresponds to the existential quantification: the set of

individuals that are linked to at least one individual of C by r.
• ∀r.C corresponds to the universal quantification: the set of

individuals whose images by r, if any, are individuals of C. (The
image of an individual by a role is all individuals linked to it by the
role).

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 20/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Examples: intersection and union

Example

• The concept of all graspable objects that can be discarded:

Graspable ⊓ Junk

• The concept of all food that are either fruits or vegetables:

Fruit ⊔ Vegetable

• The concept of things that are not fruit:

¬Fruit

• The concept of food that is not fruit:

Food ⊓ ¬Fruit

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 21/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Examples: (role) quantification

Example

• The concept of all things that contain chocolate:

∃hasIngredient.Chocolate

• The concept of all food that contain electricity:

Food ⊓ ∃contains.Electricity

• The concept of robots that only contain chocolate:

Robot ⊓ ∀contains.Chocolate

∃r.C and ∀r.C are sometimes called restrictions (existential and
universal, respectively).

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 22/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Knowledge base in ALC

An ALC knowledge base is a set of ALC formulas in four possible forms.

Definition (ALC terminological axioms)

These axioms are given in a TBox.
• C ⊑ D, read as "the concept C is subsumed by the concept D",

indicates that the concept C is more specific than the concept D;
• C ≡ D, read as "the concepts C and D are equivalent". This axiom is

particularly useful to define concepts, like the "equality" in FOL.

Definition (ALC assertional axioms)

These axioms are given in an Abox.
• C(a) means that a is an instance of C;
• r(a, b) means that a is related to b by the role r.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 23/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Examples of terminological axioms and FOL equivalent
axioms

Example (TBox)

• Every robot is artificial:

Robot ⊑ Artificial

(∀x robot(x) ⇒ artificial(x))
• A robot is a mechanical device that is also a perceptual agent:

Robot ≡ MechanicalDevice ⊓ PerceptualAgent

(∀x robot(x) ⇔ mechanical_device(x) ∧ perceptual_agent(x))
• Hagelslag is made with chocolate:

Hagelslag ⊑ ∃hasIngredient.Chocolate

(∀x ∃y hagelslag(x) ⇒ (chocolate(y) ∧ has_ingredient(x , y)))

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 24/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Examples of assertional axioms

Example (ABox)

• The instance tiago1 is a robot.

Robot(tiago1)

• The instance tiago1 is a blue mechanical device.

(Blue ⊓ MechanicalDevice)(tiago1)

• The instance tiago1 has at least one gripper amongst its
components.

(∃hasComponent.Gripper)(tiago1)

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 25/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Model-theoretic semantics for ALC

Time to give meaning to our formulas.
• We have already given some intuition on semantics using set theory:

once interpreted, concepts correspond to sets.
• The semantics we are using here is based on the theory of models

(there exist several others, but this is out of the scope of this
course).

• In this section, we give a proper definition of interpretations, just like
for PL and FOL.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 26/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Interpretations

Definition
An interpretation I is a pair (∆I, ·I) where

• ∆I is the domain of interpretation, i.e., a set of individuals,
• ·I is an interpretation that maps

• individual names a to domain elements aI ∈ ∆I;
• concept names C to a subset of the domain elements CI ⊆ ∆I;
• role names r to a set of pairs of domain elements (i.e., to a binary

relation) rI ⊆ ∆I ×∆I.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 27/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Diagram: domain of interpretation

Symbols

Models

interpretation

∆I

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 28/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Diagram: concepts

Concept names:
Robot,
MechanicalDevice

Symbols

Models

interpretation

∆I

RobotI

MechanicalDeviceI

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 29/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Diagram: concepts, instances

Instance names:
tiago, a, b, ...

Concept names:
Robot,
MechanicalDevice

Symbols

Models

interpretation

∆I

RobotI

MechanicalDeviceI

tiagoI

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 30/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Diagram: concepts, instances, roles

Instance names:
tiago, a, b, ...

Concept names:
Robot,
MechanicalDevice

Role names:
hasComponent,
likes, ...

Symbols

Models

interpretation

∆I

RobotI

MechanicalDeviceI

tiagoI

likes I

likes I

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 31/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Axioms for concept constructs

The interpretation function ·I satisfies the following equalities. The
set-theoretical notation A\B, read "A minus B", is all the elements that
are in A but NOT in B: A\B = {x ∈ A|x ̸∈ B}.

⊤I = ∆I (1)

⊥I = ∅ (2)

(C ⊔ D)I = CI ∪ DI (3)

(C ⊓ D)I = CI ∩ DI (4)

(¬C)I = ∆I\CI (5)

(∃r.C)I = {x ∈ ∆I | ∃y ∈ CI, (x , y) ∈ rI} (6)

(∀r.C)I = {x ∈ ∆I | ∀y ∈ ∆I, (x , y) ∈ rI =⇒ y ∈ CI} (7)

Notice how we are using FOL to express some of these equalities!

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 32/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Example: illustration of ∃r.C

Example
Consider the concept

(∃hasComponent.Gripper)

that represents the set of all things that have at least one component
that is a gripper. Given an interpretation I,

(∃hasComponent.Gripper)I =
{x ∈ ∆I | ∃y ∈ GripperI, (x , y) ∈ hasComponentI} :

"The set of all elements x in ∆I, such that there exists a
gripper y such that x has a y for component".

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 33/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Satisfiability of an ALC formula

Definition (Satisfiability)

Let F be an ALC formula, and I an interpretation. The fact that I
satisfies F , denoted I |= F , is given as follows depending on the structure
of F :

• I |= C ⊑ D if CI ⊆ DI; (if F = C ⊑ D)
• I |= C ≡ D if CI = DI; (if F = C ≡ D)
• I |= C(a) if aI ∈ CI; (if F = C(a))
• I |= r(a,b) if (aI, bI) ∈ rI; (if F = r(a,b))

Definition (Model)

An interpretation I is a model of a knowledge base KB, denoted I |= KB,
if I satisfies every axiom of KB.

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 34/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

From ALC to other DLs

• ALC is a small but expressive (it contains PL) description logic,
introduced by Manfred Schmidt-Schauß and Gert Smolka in 1991.

• From it, we can build other DLs, e.g., by adding more constructs.
• This increases the expressiveness but also the complexity of the DL.
• To explore the consequences of adding more constructs, in particular

in terms of the complexity of reasoning, you can visit
http: // www. cs. man. ac. uk/ ~ezolin/ dl/

• The new DLs have names related to the contructs that are being
added: for instance, ALCQ refers to the DL ALC augmented with
"Qualified number restriction" constructs.

In this section, we will briefly present some of the constructs we can add
to ALC , alongside some examples.

http://www.cs.man.ac.uk/~ezolin/dl/

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 35/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Nominals (O: "One of")

• We define a concept by extension, i.e., by explicitly indicating the
elements in the concept:

{E1, E2, ..., En}

Example
{BlackColor, BlueColor, GreenColor, OrangeColor, RedColor,
WhiteColor, YellowColor}

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 36/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Qualified number restriction (Q)
• We have three additional constructs to express restrictions to the

cardinality of roles (i.e. how many things are related to another
one):

• (= n r.C),
• (≤ n r.C),
• (≥ n r.C).

These constructs are interpreted as such:
• (= n r.C)I = {x ∈ ∆I | card{y ∈ CI | (x , y) ∈ rI} = n},
• (≤ n r.C)I = {x ∈ ∆I | card{y ∈ CI | (x , y) ∈ rI} ≤ n},
• (≥ n r.C)I = {x ∈ ∆I | card{y ∈ CI | (x , y) ∈ rI} ≥ n},

where card(X) indicates the number of elements of the set X .

Example
We can define the concept of all bipedal robots:

BipedalRobot ≡ Robot ⊓ (=2 hasAppendage.Leg)

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 37/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Role hierarchies (H)
• We add the construct r ⊑ s, where r and s are roles: r is more

specific than s.
• We can also use the construct r ≡ s to indicate that the roles are

"equivalent".

Example

• If a robot has an arm appendage, then in particular it also has an
appendage:

hasArmAppendage ⊑ hasAppendage

• A robot grasping something is also carrying something (we assume
that the robot can only carry things by grasping them, and do not
allow things like balancing a box on one’s head):

carries ≡ grasps

RO47014 Knowledge Representation & Symbolic Reasoning (KRR) 38/38

PL and FOL: Recap ALC : syntax ALC : semantics Towards OWL

Next week: OWL

• OWL (Web Ontology Language) is a standard formalism and
semantic basis for ontologies.

• It is built upon ALC , with new constructs added to make it more
descriptive, such as indications about roles, given in an RBox.

• Next week, you will learn about ontologies, using description logics
such as OWL DL.

	Propositional logic: syntax and semantics
	Proof systems: theorem proving and resolution, model checking
	Horn clauses, forward and backward chaining
	Horn clauses
	SLD resolution

	Computability and complexity
	Computability
	Complexity

	FOL: syntax
	FOL: semantics
	FOL in practice: Logical reasoning
	Decidability
	PL and FOL: Recap
	ALC : syntax
	ALC : semantics
	Towards OWL

